Progressively measurable process

Last updated

In mathematics, progressive measurability is a property in the theory of stochastic processes. A progressively measurable process, while defined quite technically, is important because it implies the stopped process is measurable. Being progressively measurable is a strictly stronger property than the notion of being an adapted process. [1] Progressively measurable processes are important in the theory of Itô integrals.

Contents

Definition

Let

The process is said to be progressively measurable [2] (or simply progressive) if, for every time , the map defined by is -measurable. This implies that is -adapted. [1]

A subset is said to be progressively measurable if the process is progressively measurable in the sense defined above, where is the indicator function of . The set of all such subsets form a sigma algebra on , denoted by , and a process is progressively measurable in the sense of the previous paragraph if, and only if, it is -measurable.

Properties

with respect to Brownian motion is defined, is the set of equivalence classes of -measurable processes in .

Related Research Articles

<span class="mw-page-title-main">Random variable</span> Variable representing a random phenomenon

A random variable is a mathematical formalization of a quantity or object which depends on random events. The term 'random variable' in its mathematical definition refers to neither randomness nor variability but instead is a mathematical function in which

In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair is called a measurable space.

In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of those values. More formally, in the case when the random variable is defined over a discrete probability space, the "conditions" are a partition of this probability space.

In probability theory and related fields, Malliavin calculus is a set of mathematical techniques and ideas that extend the mathematical field of calculus of variations from deterministic functions to stochastic processes. In particular, it allows the computation of derivatives of random variables. Malliavin calculus is also called the stochastic calculus of variations. P. Malliavin first initiated the calculus on infinite dimensional space. Then, the significant contributors such as S. Kusuoka, D. Stroock, J-M. Bismut, Shinzo Watanabe, I. Shigekawa, and so on finally completed the foundations.

A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices, random growth models or physical systems that are subjected to thermal fluctuations.

A Dynkin system, named after Eugene Dynkin, is a collection of subsets of another universal set satisfying a set of axioms weaker than those of 𝜎-algebra. Dynkin systems are sometimes referred to as 𝜆-systems or d-system. These set families have applications in measure theory and probability.

In mathematics, a π-system on a set is a collection of certain subsets of such that

In probability theory, a Hunt process is a type of Markov process, named for mathematician Gilbert A. Hunt who first defined them in 1957. Hunt processes were important in the study of probabilistic potential theory until they were superseded by right processes in the 1970s.

In probability theory, random element is a generalization of the concept of random variable to more complicated spaces than the simple real line. The concept was introduced by Maurice Fréchet who commented that the “development of probability theory and expansion of area of its applications have led to necessity to pass from schemes where (random) outcomes of experiments can be described by number or a finite set of numbers, to schemes where outcomes of experiments represent, for example, vectors, functions, processes, fields, series, transformations, and also sets or collections of sets.”

In the study of stochastic processes, a stochastic process is adapted if information about the value of the process at a given time is available at that same time. An informal interpretation is that X is adapted if and only if, for every realisation and every n, Xn is known at time n. The concept of an adapted process is essential, for instance, in the definition of the Itō integral, which only makes sense if the integrand is an adapted process.

In mathematics, finite-dimensional distributions are a tool in the study of measures and stochastic processes. A lot of information can be gained by studying the "projection" of a measure onto a finite-dimensional vector space.

In the study of stochastic processes in mathematics, a hitting time is the first time at which a given process "hits" a given subset of the state space. Exit times and return times are also examples of hitting times.

In probability theory, a random measure is a measure-valued random element. Random measures are for example used in the theory of random processes, where they form many important point processes such as Poisson point processes and Cox processes.

In probability theory, a standard probability space, also called Lebesgue–Rokhlin probability space or just Lebesgue space is a probability space satisfying certain assumptions introduced by Vladimir Rokhlin in 1940. Informally, it is a probability space consisting of an interval and/or a finite or countable number of atoms.

In probability theory, regular conditional probability is a concept that formalizes the notion of conditioning on the outcome of a random variable. The resulting conditional probability distribution is a parametrized family of probability measures called a Markov kernel.

In probability theory, a Markov kernel is a map that in the general theory of Markov processes plays the role that the transition matrix does in the theory of Markov processes with a finite state space.

In probability theory, the Doob–Dynkin lemma, named after Joseph L. Doob and Eugene Dynkin, characterizes the situation when one random variable is a function of another by the inclusion of the -algebras generated by the random variables. The usual statement of the lemma is formulated in terms of one random variable being measurable with respect to the -algebra generated by the other.

The Engelbert–Schmidt zero–one law is a theorem that gives a mathematical criterion for an event associated with a continuous, non-decreasing additive functional of Brownian motion to have probability either 0 or 1, without the possibility of an intermediate value. This zero-one law is used in the study of questions of finiteness and asymptotic behavior for stochastic differential equations. This 0-1 law, published in 1981, is named after Hans-Jürgen Engelbert and the probabilist Wolfgang Schmidt.

In functional analysis, every C*-algebra is isomorphic to a subalgebra of the C*-algebra of bounded linear operators on some Hilbert space This article describes the spectral theory of closed normal subalgebras of . A subalgebra of is called normal if it is commutative and closed under the operation: for all , we have and that .

In stochastic calculus, the Ogawa integral, also called the non-causal stochastic integral, is a stochastic integral for non-adapted processes as integrands. The corresponding calculus is called non-causal calculus in order to distinguish it from the anticipating calculus of the Skorokhod integral. The term causality refers to the adaptation to the natural filtration of the integrator.

References

  1. 1 2 3 4 5 Karatzas, Ioannis; Shreve, Steven (1991). Brownian Motion and Stochastic Calculus (2nd ed.). Springer. pp. 4–5. ISBN   0-387-97655-8.
  2. Pascucci, Andrea (2011). "Continuous-time stochastic processes". PDE and Martingale Methods in Option Pricing. Bocconi & Springer Series. Springer. p. 110. doi:10.1007/978-88-470-1781-8. ISBN   978-88-470-1780-1. S2CID   118113178.