Project commissioning

Last updated
Commissioning of a conveyor where equipment is being tested to its maximum rating and capacity of operation. Material on conveyor during commissioning (7548464136).jpg
Commissioning of a conveyor where equipment is being tested to its maximum rating and capacity of operation.

Project commissioning is the process of ensuring that all systems and components of a building or industrial plant are designed, installed, tested, operated, and maintained according to the owner's or final client's operational requirements. A commissioning process may be applied not only to new projects but also to existing units and systems subject to expansion, renovation or revamping. [1] [2]

Contents

In practice, the commissioning process is the integrated application of a set of engineering techniques and procedures to check, inspect and test every operational component of the project: from individual functions (such as instruments and equipment) up to complex amalgamations (such as modules, subsystems and systems).

Commissioning activities in the broader sense applicable to all phases of the project from the basic and detailed design, procurement, construction and assembly until the final handover of the unit to the owner, sometimes including an assisted operation phase.

Objective and impact

The main objective of commissioning is to effect the safe and orderly handover of the unit from the constructor to the owner, guaranteeing its operability in terms of performance, reliability, safety and information traceability. Additionally, when executed in a planned and effective way, commissioning normally represents an essential factor for the fulfillment of schedule, costs, safety and quality requirements of the project. [3]

Commissioning management systems

For complex projects, the large volume and complexity of commissioning data, together with the need to guarantee adequate information traceability, normally leads to the use of powerful IT tools, known as commissioning management systems, to allow effective planning and monitoring of the commissioning activities.

Independent discipline

There is currently no formal education or university degree which addresses the training or certification of a Project Commissioning Engineer. Various short and online training courses are available, but they are designed for qualified engineers.

Large civil and industrial projects for which Commissioning as an independent discipline is as important as traditional engineering disciplines, i.e. civil, naval, chemical, mechanical, electrical, electronic, instrumentation, automation, or telecom engineering, include chemical and petrochemical plants, oil and gas platforms and pipelines, metallurgical plants, paper and cellulose plants, coal handling plants, thermoelectric and hydroelectric plants, buildings, bridges, highways, and railroads.

See also

Related Research Articles

<span class="mw-page-title-main">Acceptance testing</span> Test to determine if the requirements of a specification or contract are met

In engineering and its various subdisciplines, acceptance testing is a test conducted to determine if the requirements of a specification or contract are met. It may involve chemical tests, physical tests, or performance tests.

<span class="mw-page-title-main">Safety engineering</span> Engineering discipline which assures that engineered systems provide acceptable levels of safety

Safety engineering is an engineering discipline which assures that engineered systems provide acceptable levels of safety. It is strongly related to industrial engineering/systems engineering, and the subset system safety engineering. Safety engineering assures that a life-critical system behaves as needed, even when components fail.

<span class="mw-page-title-main">Construction</span> Process of the building or assembling of a building or infrastructure

Construction is a general term meaning the art and science to form objects, systems, or organizations, and comes from Latin constructio and Old French construction. To construct is the verb: the act of building, and the noun is construction: how something is built, the nature of its structure.

A Bachelor of Engineering or Bachelor of Science in Engineering (BSE) is an undergraduate academic degree awarded to a college graduate majoring in an engineering discipline at a higher education institution.

In software project management, software testing, and software engineering, verification and validation (V&V) is the process of checking that a software system meets specifications and requirements so that it fulfills its intended purpose. It may also be referred to as software quality control. It is normally the responsibility of software testers as part of the software development lifecycle. In simple terms, software verification is: "Assuming we should build X, does our software achieve its goals without any bugs or gaps?" On the other hand, software validation is: "Was X what we should have built? Does X meet the high-level requirements?"

<span class="mw-page-title-main">Chemical plant</span> Industrial process plant that manufactures chemicals

A chemical plant is an industrial process plant that manufactures chemicals, usually on a large scale. The general objective of a chemical plant is to create new material wealth via the chemical or biological transformation and or separation of materials. Chemical plants use specialized equipment, units, and technology in the manufacturing process. Other kinds of plants, such as polymer, pharmaceutical, food, and some beverage production facilities, power plants, oil refineries or other refineries, natural gas processing and biochemical plants, water and wastewater treatment, and pollution control equipment use many technologies that have similarities to chemical plant technology such as fluid systems and chemical reactor systems. Some would consider an oil refinery or a pharmaceutical or polymer manufacturer to be effectively a chemical plant.

<span class="mw-page-title-main">Texas City Refinery explosion</span> 2005 deadly refinery plant accident

The Texas City Refinery explosion occurred on March 23, 2005, when a vapor cloud of natural gas and petroleum ignited and violently exploded at the isomerization (ISOM) process unit at the BP Texas City refinery in Texas City, Texas, killing 15 workers, injuring 180 others and severely damaging the refinery. The Texas City Refinery was the second-largest oil refinery in the state, and the third-largest in the United States with an input capacity of 437,000 barrels (69,500 m3) per day as of January 1, 2000. BP acquired the Texas City refinery as part of its merger with Amoco in 1999.

<span class="mw-page-title-main">Vapor-compression refrigeration</span> Refrigeration process

Vapour-compression refrigeration or vapor-compression refrigeration system (VCRS), in which the refrigerant undergoes phase changes, is one of the many refrigeration cycles and is the most widely used method for air conditioning of buildings and automobiles. It is also used in domestic and commercial refrigerators, large-scale warehouses for chilled or frozen storage of foods and meats, refrigerated trucks and railroad cars, and a host of other commercial and industrial services. Oil refineries, petrochemical and chemical processing plants, and natural gas processing plants are among the many types of industrial plants that often utilize large vapor-compression refrigeration systems. Cascade refrigeration systems may also be implemented using two compressors.

Performance engineering encompasses the techniques applied during a systems development life cycle to ensure the non-functional requirements for performance will be met. It may be alternatively referred to as systems performance engineering within systems engineering, and software performance engineering or application performance engineering within software engineering.

The term separator in oilfield terminology designates a pressure vessel used for separating well fluids produced from oil and gas wells into gaseous and liquid components. A separator for petroleum production is a large vessel designed to separate production fluids into their constituent components of oil, gas and water. A separating vessel may be referred to in the following ways: Oil and gas separator, Separator, Stage separator, Trap, Knockout vessel, Flash chamber, Expansion separator or expansion vessel, Scrubber, Filter. These separating vessels are normally used on a producing lease or platform near the wellhead, manifold, or tank battery to separate fluids produced from oil and gas wells into oil and gas or liquid and gas. An oil and gas separator generally includes the following essential components and features:

  1. A vessel that includes (a) primary separation device and/or section, (b) secondary "gravity" settling (separating) section, (c) mist extractor to remove small liquid particles from the gas, (d) gas outlet, (e) liquid settling (separating) section to remove gas or vapor from oil, (f) oil outlet, and (g) water outlet.
  2. Adequate volumetric liquid capacity to handle liquid surges (slugs) from the wells and/or flowlines.
  3. Adequate vessel diameter and height or length to allow most of the liquid to separate from the gas so that the mist extractor will not be flooded.
  4. A means of controlling an oil level in the separator, which usually includes a liquid-level controller and a diaphragm motor valve on the oil outlet.
  5. A back pressure valve on the gas outlet to maintain a steady pressure in the vessel.
  6. Pressure relief devices.

Project engineering includes all parts of the design of manufacturing or processing facilities, either new or modifications to and expansions of existing facilities. A "project" consists of a coordinated series of activities or tasks performed by engineers, designers, drafters and others from one or more engineering disciplines or departments. Project tasks consist of such things as performing calculations, writing specifications, preparing bids, reviewing equipment proposals and evaluating or selecting equipment and preparing various lists, such as equipment and materials lists, and creating drawings such as electrical, piping and instrumentation diagrams, physical layouts and other drawings used in design and construction. A small project may be under the direction of a project engineer. Large projects are typically under the direction of a project manager or management team. Some facilities have in house staff to handle small projects, while some major companies have a department that does internal project engineering. Large projects are typically contracted out to engineering companies. Staffing at engineering companies varies according to the work load and duration of employment may only last until an individual's tasks are completed.

In construction, commissioning or commissioning process is an integrated, systematic process to ensure, through documented verification, that all building systems perform interactively according to the "Design Intent". The commissioning process establishes and documents the "Owner's Project Requirements (OPR)" criteria for system function, performance expectations, maintainability; verify and document compliance with these criteria throughout all phases of the project. Commissioning procedures require a collaborative team effort and 'should' begin during the pre-design or planning phase of the project, continue through the design and construction phases, initial occupancy phase, training of operations and maintenance (O&M) staff, and into occupancy.

Oxygen plants are industrial systems designed to generate oxygen. They typically use air as a feedstock and separate it from other components of air using pressure swing adsorption or membrane separation techniques. Such plants are distinct from cryogenic separation plants which separate and capture all the components of air.

Commissioning is the process of assuring that all systems and components of a building or industrial plant are designed, installed, tested, operated, and maintained according to the operational requirements of the owner or final client.

Technical Integrity Engineering, also known as Asset Integrity, involves various engineering disciplines that focus on making sure a product, process, or system meets its intended requirements when it's used. Applying these disciplines to reduce costs, maintain schedules, manage technical risks, and handle legal concerns during a project's entire life cycle ensures operations run smoothly and safely in industries like Oil and Gas, Power Generation, and Nuclear Power. This helps plants work efficiently, stay safe, and deal with challenges like hazards effectively.

<span class="mw-page-title-main">IPIP SA</span> Romanian engineering institute for oil refineries.

S.C. IPIP S.A. the Engineering and Design Institute for Oil Refineries and Petrochemical Plants is a Romanian company which was established in 1950, at Ploiești, as a milestone in the development of the petroleum, hydrocarbon processing and petrochemical industries as well as of their related fields, in Romania.

Asset Integrity Management Systems (AIMS) outline the ability of an asset to perform its required function effectively and efficiently whilst protecting health, safety and the environment and the means of ensuring that the people, systems, processes, and resources that deliver integrity are in place, in use and will perform when required over the whole life-cycle of the asset. The technical aspects of AIMS are illustrated in Figure 1. Originally developed in the UK, Asset Integrity Management was the result of a collaboration between the HSE and leading oil and gas operators resulting in a series of reports and workshops, the outcome being a group of documents called Key Programmes, currently publicly available.

Geoprofessions is a term coined by the Geoprofessional Business Association to connote various technical disciplines that involve engineering, earth and environmental services applied to below-ground ("subsurface"), ground-surface, and ground-surface-connected conditions, structures, or formations. The principal disciplines include, as major categories:

An isolation valve is a valve in a fluid handling system that stops the flow of process media to a given location, usually for maintenance or safety purposes. They can also be used to provide flow logic, and to connect external equipment to a system. A valve is classified as an isolation valve because of its intended function in a system, not because of the type of the valve itself. Therefore, many different types of valves can be classified as isolation valves.

<span class="mw-page-title-main">Arcadia (engineering)</span>

ARCADIA is a system and software architecture engineering method based on architecture-centric and model-driven engineering activities.

References

  1. HORSLEY, D. Process Plant Commissioning, a User Guide, Institution of Chemical Engineering, 1998.
  2. Fares, F., Montenegro, B., Prates, A., Commissioning of Oil & Gas Projects – Current Status, Evolution and Trends. in: Rio Oil & Gas 2010, Rio de Janeiro, Brazil, set 2010.
  3. Bendiksen, T., Young, G. Commissioning of Offshore Oil and Gas Projects: The Manager's Handbook, AuthorHouse Publishers, 2005.