Prover9

Last updated

Prover9 is an automated theorem prover for first-order and equational logic developed by William McCune.

Contents

Description

Prover9 is the successor of the Otter theorem prover also developed by William McCune. [1] :1 Prover9 is noted for producing relatively readable proofs and having a powerful hints strategy. [1] :11

Prover9 is intentionally paired with Mace4, which searches for finite models and counterexamples. Both can be run simultaneously from the same input, [2] with Prover9 attempting to find a proof, while Mace4 attempts to find a (disproving) counter-example. Prover9, Mace4, and many other tools are built on an underlying library named LADR ("Library for Automated Deduction Research") to simplify implementation. Resulting proofs can be double-checked by Ivy, a proof-checking tool that has been separately verified using ACL2.

In July 2006 the LADR/Prover9/Mace4 input language made a major change (which also differentiates it from Otter). The key distinction between "clauses" and "formulas" completely disappeared; "formulas" can now have free variables; and "clauses" are now a subset of "formulas". Prover9/Mace4 also supports a "goal" type of formula, which is automatically negated for proof. Prover9 attempts to automatically generate a proof by default; in contrast, Otter's automatic mode must be explicitly set.

Prover9 was under active development, with new releases every month or every other month, until 2009. Prover9 is free software, and therefore, open source software; it is released under GPL version 2 or later.

Examples

Socrates

The traditional "all men are mortal", "Socrates is a man", prove "Socrates is mortal" can be expressed this way in Prover9:

formulas(assumptions).man(x)->mortal(x).% open formula with free variable xman(socrates).end_of_list.formulas(goals).mortal(socrates).end_of_list.

This will be automatically converted into clausal form (which Prover9 also accepts):

formulas(sos).-man(x)|mortal(x).man(socrates).-mortal(socrates).end_of_list.

Square root of 2 is irrational

A proof that the square root of 2 is irrational can be expressed this way: [3]

formulas(assumptions).1*x=x.% identityx*y=y*x.% commutativityx*(y*z)=(x*y)*z.% associativity(x*y=x*z)->y=z.% cancellation (0 is not allowed, so x!=0).%% Now let's define divides(x,y): x divides y.%   Example: divides(2,6) is true because 2*3=6.%divides(x,y)<->(existszx*z=y).divides(2,x*x)->divides(2,x).% If 2 divides x*x, it divides x.a*a=2*(b*b).% a/b = sqrt(2), so a^2 = 2 * b^2.(x!=1)->-(divides(x,a)&divides(x,b)).% a/b is in lowest terms2!=1.% Original author almost forgot this.end_of_list.

Related Research Articles

Automated theorem proving is a subfield of automated reasoning and mathematical logic dealing with proving mathematical theorems by computer programs. Automated reasoning over mathematical proof was a major impetus for the development of computer science.

In logic and computer science, the Boolean satisfiability problem (sometimes called propositional satisfiability problem and abbreviated SATISFIABILITY, SAT or B-SAT) is the problem of determining if there exists an interpretation that satisfies a given Boolean formula. In other words, it asks whether the variables of a given Boolean formula can be consistently replaced by the values TRUE or FALSE in such a way that the formula evaluates to TRUE. If this is the case, the formula is called satisfiable. On the other hand, if no such assignment exists, the function expressed by the formula is FALSE for all possible variable assignments and the formula is unsatisfiable. For example, the formula "a AND NOT b" is satisfiable because one can find the values a = TRUE and b = FALSE, which make (a AND NOT b) = TRUE. In contrast, "a AND NOT a" is unsatisfiable.

First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

<span class="mw-page-title-main">Original proof of Gödel's completeness theorem</span>

The proof of Gödel's completeness theorem given by Kurt Gödel in his doctoral dissertation of 1929 is not easy to read today; it uses concepts and formalisms that are no longer used and terminology that is often obscure. The version given below attempts to represent all the steps in the proof and all the important ideas faithfully, while restating the proof in the modern language of mathematical logic. This outline should not be considered a rigorous proof of the theorem.

Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.

Prolog is a logic programming language that has its origins in artificial intelligence, automated theorem proving and computational linguistics.

<span class="mw-page-title-main">Mathematical proof</span> Reasoning for mathematical statements

A mathematical proof is a deductive argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning which establish logical certainty, to be distinguished from empirical arguments or non-exhaustive inductive reasoning which establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in all possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for further mathematical work.

Otter is an automated theorem prover developed by William McCune at Argonne National Laboratory in Illinois. Otter was the first widely distributed, high-performance theorem prover for first-order logic, and it pioneered a number of important implementation techniques. Otter is an acronym for Organized Techniques for Theorem-proving and Effective Research.

Without loss of generality is a frequently used expression in mathematics. The term is used to indicate the assumption that follows is chosen arbitrarily, narrowing the premise to a particular case, but does not affect the validity of the proof in general. The other cases are sufficiently similar to the one presented that proving them follows by essentially the same logic. As a result, once a proof is given for the particular case, it is trivial to adapt it to prove the conclusion in all other cases.

In mathematical logic and logic programming, a Horn clause is a logical formula of a particular rule-like form that gives it useful properties for use in logic programming, formal specification, universal algebra and model theory. Horn clauses are named for the logician Alfred Horn, who first pointed out their significance in 1951.

In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel–choice set theory (ZFC). NBG introduces the notion of class, which is a collection of sets defined by a formula whose quantifiers range only over sets. NBG can define classes that are larger than sets, such as the class of all sets and the class of all ordinals. Morse–Kelley set theory (MK) allows classes to be defined by formulas whose quantifiers range over classes. NBG is finitely axiomatizable, while ZFC and MK are not.

In computational complexity theory, the Cook–Levin theorem, also known as Cook's theorem, states that the Boolean satisfiability problem is NP-complete. That is, it is in NP, and any problem in NP can be reduced in polynomial time by a deterministic Turing machine to the Boolean satisfiability problem.

<span class="mw-page-title-main">Method of analytic tableaux</span>

In proof theory, the semantic tableau is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic. An analytic tableau is a tree structure computed for a logical formula, having at each node a subformula of the original formula to be proved or refuted. Computation constructs this tree and uses it to prove or refute the whole formula. The tableau method can also determine the satisfiability of finite sets of formulas of various logics. It is the most popular proof procedure for modal logics.

In mathematical logic and automated theorem proving, resolution is a rule of inference leading to a refutation-complete theorem-proving technique for sentences in propositional logic and first-order logic. For propositional logic, systematically applying the resolution rule acts as a decision procedure for formula unsatisfiability, solving the Boolean satisfiability problem. For first-order logic, resolution can be used as the basis for a semi-algorithm for the unsatisfiability problem of first-order logic, providing a more practical method than one following from Gödel's completeness theorem.

In logic and theoretical computer science, and specifically proof theory and computational complexity theory, proof complexity is the field aiming to understand and analyse the computational resources that are required to prove or refute statements. Research in proof complexity is predominantly concerned with proving proof-length lower and upper bounds in various propositional proof systems. For example, among the major challenges of proof complexity is showing that the Frege system, the usual propositional calculus, does not admit polynomial-size proofs of all tautologies. Here the size of the proof is simply the number of symbols in it, and a proof is said to be of polynomial size if it is polynomial in the size of the tautology it proves.

William Walker McCune was an American computer scientist and logician working in the fields of automated reasoning, algebra, logic, and formal methods.

In computational complexity theory, the language TQBF is a formal language consisting of the true quantified Boolean formulas. A (fully) quantified Boolean formula is a formula in quantified propositional logic where every variable is quantified, using either existential or universal quantifiers, at the beginning of the sentence. Such a formula is equivalent to either true or false. If such a formula evaluates to true, then that formula is in the language TQBF. It is also known as QSAT.

Concolic testing is a hybrid software verification technique that performs symbolic execution, a classical technique that treats program variables as symbolic variables, along a concrete execution path. Symbolic execution is used in conjunction with an automated theorem prover or constraint solver based on constraint logic programming to generate new concrete inputs with the aim of maximizing code coverage. Its main focus is finding bugs in real-world software, rather than demonstrating program correctness.

In mathematical logic, minimal axioms for Boolean algebra are assumptions which are equivalent to the axioms of Boolean algebra, chosen to be as short as possible. For example, an axiom with six NAND operations and three variables is equivalent to Boolean algebra:

Models And Counter-Examples (Mace) is a model finder. Most automated theorem provers try to perform a proof by refutation on the clause normal form of the proof problem, by showing that the combination of axioms and negated conjecture can never be simultaneously true, i.e. does not have a model. A model finder such as Mace, on the other hand, tries to find an explicit model of a set of clauses. If it succeeds, this corresponds to a counter-example for the conjecture, i.e. it disproves the (claimed) theorem.

References

  1. 1 2 Phillips, J. D.; Stanovsky, David. "Automated Theorem Proving in Loop Theory" (PDF). Charles University . Archived (PDF) from the original on 28 March 2018. Retrieved 15 November 2018.
  2. Berghammer, Rudolf; Struth, Georg (21 June 2010). "On Automated Program Construction and Verification" (PDF). In Bolduc, Claude; Desharnais, Jules; Ktari, Bechir (eds.). Mathematics of Program Construction, Proceedings. 10th International Conference, MPC 2010. Quebec City. doi:10.1007/978-3-642-13321-3. ISBN   978-3-642-13320-6. S2CID   6962311. Archived from the original (PDF) on 19 November 2018. Retrieved 19 November 2018.
  3. Wheeler, David A. "sqrt2.in". David A. Wheeler’s Personal Home Page. Retrieved 14 March 2016.