Pumpellyite

Last updated
Pumpellyite
Mineraly.sk - pumpellyit.jpg
General
Category Sorosilicate
IMA symbol Pmp [1]
Strunz classification 9.BG.20
Crystal system Monoclinic
Crystal class Prismatic (2/m)
(same H-M symbol)
Space group A2/m
Identification
ColorOlive green to bluish green
Cleavage Good in two directions
Fracture Uneven
Tenacity Brittle
Mohs scale hardness5.5-6
Luster Vitreous, dull
Streak White
Diaphaneity Translucent
Specific gravity 3.2
References [2] [3]

Pumpellyite is a group of closely related sorosilicate minerals:

Pumpellyite crystallizes in the monoclinic-prismatic crystal system. It typically occurs as blue-green to olive green fibrous to lamellar masses. It is translucent and glassy with a Mohs hardness of 5.5 and a specific gravity of 3.2. It has refractive indices of nα=1.674–1.748, nβ=1.675–1.754 and nγ=1.688–1.764.

Pumpellyite occurs as amygdaloidal and fracture fillings in basaltic and gabbroic rocks in metamorphic terranes. It is an indicator mineral of the prehnite-pumpellyite metamorphic facies. It is associated with chlorite, epidote, quartz, calcite and prehnite.

It was first described in 1925 for occurrences in the Calumet mine, Houghton Co., Keweenaw Peninisula, Michigan, and named for United States geologist Raphael Pumpelly (1837–1923). [9]

See also

Related Research Articles

<span class="mw-page-title-main">Prehnite</span>

Prehnite is an inosilicate of calcium and aluminium with the formula: Ca2Al(AlSi3O10)(OH)2. Limited Fe3+ substitutes for aluminium in the structure. Prehnite crystallizes in the orthorhombic crystal system, and most often forms as stalactitic or botryoidal aggregates, with only just the crests of small crystals showing any faces, which are almost always curved or composite. Very rarely will it form distinct, well-individualized crystals showing a square-like cross-section, including those found at the Jeffrey Mine in Asbestos, Quebec, Canada. Prehnite is brittle with an uneven fracture and a vitreous to pearly luster. Its hardness is 6-6.5, its specific gravity is 2.80-2.90 and its color varies from light green to yellow, but also colorless, blue, pink or white. In April 2000, rare orange prehnite was discovered in the Kalahari Manganese Fields, South Africa. Prehnite is mostly translucent, and rarely transparent.

<span class="mw-page-title-main">Hornblende</span> Complex inosilicate series of minerals

Hornblende is a complex inosilicate series of minerals. It is not a recognized mineral in its own right, but the name is used as a general or field term, to refer to a dark amphibole. Hornblende minerals are common in igneous and metamorphic rocks.

<span class="mw-page-title-main">Amphibole</span> Group of inosilicate minerals

Amphibole is a group of inosilicate minerals, forming prism or needlelike crystals, composed of double chain SiO
4
tetrahedra, linked at the vertices and generally containing ions of iron and/or magnesium in their structures. Its IMA symbol is Amp. Amphiboles can be green, black, colorless, white, yellow, blue, or brown. The International Mineralogical Association currently classifies amphiboles as a mineral supergroup, within which are two groups and several subgroups.

<span class="mw-page-title-main">Actinolite</span> Mineral

Actinolite is an amphibole silicate mineral with the chemical formula Ca2(Mg4.5-2.5Fe2+0.5-2.5)Si8O22(OH)2.

<span class="mw-page-title-main">Axinite</span>

Axinite is a brown to violet-brown, or reddish-brown bladed group of minerals composed of calcium aluminium boro-silicate, (Ca,Fe,Mn)3Al2BO3Si4O12OH. Axinite is pyroelectric and piezoelectric.

<span class="mw-page-title-main">Tremolite</span> Amphibole, double chain inosilicate mineral

Tremolite is a member of the amphibole group of silicate minerals with composition: Ca2(Mg5.0-4.5Fe2+0.0-0.5)Si8O22(OH)2. Tremolite forms by metamorphism of sediments rich in dolomite and quartz. Tremolite forms a series with actinolite and ferro-actinolite. Pure magnesium tremolite is creamy white, but the color grades to dark green with increasing iron content. It has a hardness on Mohs scale of 5 to 6. Nephrite, one of the two minerals of the gemstone jade, is a green variety of tremolite.

<span class="mw-page-title-main">Glaucophane</span>

Glaucophane is the name of a mineral and a mineral group belonging to the sodic amphibole supergroup of the double chain inosilicates, with the chemical formula ☐Na2(Mg3Al2)Si8O22(OH)2.

<span class="mw-page-title-main">Fayalite</span> Iron end-member of olivine, a nesosilicate mineral

Fayalite is the iron-rich end-member of the olivine solid-solution series. In common with all minerals in the olivine group, fayalite crystallizes in the orthorhombic system with cell parameters a 4.82 Å, b 10.48 Å and c 6.09 Å.

<span class="mw-page-title-main">Cummingtonite</span> Silicate mineral

Cummingtonite is a metamorphic amphibole with the chemical composition (Mg,Fe2+
)
2
(Mg,Fe2+
)
5
Si
8
O
22
(OH)
2
, magnesium iron silicate hydroxide.

<span class="mw-page-title-main">Babingtonite</span>

Babingtonite is a calcium iron manganese inosilicate mineral with the formula Ca2(Fe,Mn)FeSi5O14(OH). It is unusual in that iron(III) completely replaces the aluminium so typical of silicate minerals. It is a very dark green to black translucent mineral crystallizing in the triclinic system with typically radial short prismatic clusters and druzy coatings. It occurs with zeolite minerals in cavities in volcanic rocks. Babingtonite contains both iron(II) and iron(III) and shows weak magnetism. It has a Mohs hardness of 5.5 to 6 and a specific gravity of 3.3.

<span class="mw-page-title-main">Chondrodite</span>

Chondrodite is a nesosilicate mineral with formula (Mg,Fe)
5
(SiO
4
)
2
(F,OH,O)
2
. Although it is a fairly rare mineral, it is the most frequently encountered member of the humite group of minerals. It is formed in hydrothermal deposits from locally metamorphosed dolomite. It is also found associated with skarn and serpentinite. It was discovered in 1817 at Pargas in Finland, and named from the Greek for "granule", which is a common habit for this mineral.

<span class="mw-page-title-main">Chloritoid</span>

Chloritoid is a silicate mineral of metamorphic origin. It is an iron magnesium manganese alumino-silicate hydroxide with formula (Fe, Mg, Mn)
2
Al
4
Si
2
O
10
(OH)
4
. It occurs as greenish grey to black platy micaceous crystals and foliated masses. Its Mohs hardness is 6.5, unusually high for a platy mineral, and it has a specific gravity of 3.52 to 3.57. It typically occurs in phyllites, schists and marbles.

<span class="mw-page-title-main">Aliettite</span> Mineral

Aliettite is a complex phyllosilicate mineral of the smectite group with a formula of (Ca0.2Mg6(Si,Al)8O20(OH)4·4H2O) or [Mg3Si4O10(OH)2](Ca0.5,Na)0.33(Al,Mg,Fe2+)23(Si,Al)4O10(OH)2·n(H2O).

<span class="mw-page-title-main">Julgoldite</span>

Julgoldite is a member of the pumpellyite mineral series, a series of minerals characterized by the chemical bonding of silica tetrahedra with alkali and transition metal cations. Julgoldites, along with more common minerals like epidote and vesuvianite, belong to the subclass of sorosilicates, the rock-forming minerals that contain SiO4 tetrahedra that share a common oxygen to form Si2O7 ions with a charge of 6- (Deer et al., 1996). Julgoldite has been recognized for its importance in low grade metamorphism, forming under shear stress accompanied by relatively low temperatures (Coombs, 1953). Julgoldite was named in honor of Professor Julian Royce Goldsmith (1918–1999) of the University of Chicago.

<span class="mw-page-title-main">Tschermakite</span> Amphibole, double chain inosilicate mineral

The endmember hornblende tschermakite (☐Ca2(Mg3Al2)(Si6Al2)O22(OH)2) is a calcium rich monoclinic amphibole mineral. It is frequently synthesized along with its ternary solid solution series members tremolite and cummingtonite so that the thermodynamic properties of its assemblage can be applied to solving other solid solution series from a variety of amphibole minerals.

<span class="mw-page-title-main">Metamorphic facies</span> Set of mineral assemblages in metamorphic rocks formed under similar pressures and temperatures

A metamorphic facies is a set of mineral assemblages in metamorphic rocks formed under similar pressures and temperatures. The assemblage is typical of what is formed in conditions corresponding to an area on the two dimensional graph of temperature vs. pressure. Rocks which contain certain minerals can therefore be linked to certain tectonic settings, times and places in the geological history of the area. The boundaries between facies are wide because they are gradational and approximate. The area on the graph corresponding to rock formation at the lowest values of temperature and pressure is the range of formation of sedimentary rocks, as opposed to metamorphic rocks, in a process called diagenesis.

<span class="mw-page-title-main">Piemontite</span>

Piemontite is a sorosilicate mineral in the monoclinic crystal system with the chemical formula Ca2(Al,Mn3+,Fe3+)3(SiO4)(Si2O7)O(OH). It is a member of the epidote group.

<span class="mw-page-title-main">Gedrite</span>

Gedrite is a crystal belonging to the orthorhombic ferromagnesian subgroup of the amphibole supergroup of the double chain inosilicate minerals with the ideal chemical formula Mg2(Mg3Al2)(Si6Al2)O22(OH)2.

Almarudite is an extremely rare alkaline manganese beryllium silicate mineral of the cyclosilicates class, with the chemical formula K([ ],Na)2(Mn2+,Fe2+,Mg)2(Be,Al)3[Si12O30], from the volcanic environment of the Eifel Mountains in Germany.

<span class="mw-page-title-main">Woodhouseite</span>

Woodhouseite belongs to the beudantite group AB3(XO4)(SO4)(OH)6 where A = Ba, Ca, Pb or Sr, B = Al or Fe and X = S, As or P. Minerals in this group are isostructural with each other and also with minerals in the crandallite and alunite groups. They crystallise in the rhombohedral system with space group R3m and crystals are usually either tabular {0001} or pseudo-cubic to pseudo-cuboctahedral. Woodhouseite was named after Professor Charles Douglas Woodhouse (1888–1975), an American mineralogist and mineral collector from the University of California, Santa Barbara, US, and one-time General Manager of Champion Sillimanite, Inc.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. Mineralienatlas
  3. Chesterman, Charles W. (1978). The Audubon Society field guide to North American rocks and minerals. New York: Alfred A. Knopf. p. 567. ISBN   0394502698.
  4. Mindat - Pumpellyite-(Mg)
  5. Mindat - Pumpellyite-(Fe2+)
  6. Mindat - Pumpellyite-(Fe3+)
  7. Mindat - Pumpellyite-(Mn2+)
  8. Mindat - Pumpellyite (Al)
  9. Huber, N. King (1975). The Geologic Story of Isle Royale National Park, USGS Bulletin 1309. Washington: U.S. Government Printing Office. p. 58.