Pyroglutamyl-histidyl-glycine

Last updated
Pyroglutamyl-histidyl-glycine
Pyroglutamyl-histidyl-glycine.png
Names
IUPAC name
2-[[(2S)-3-(4H-imidazol-4-yl)-2-[[(2S)-5-oxopyrrolidine-2-carbonyl]amino]propanoyl]amino]acetic acid
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C13H17N5O5/c19-10-2-1-8(17-10)13(23)18-9(3-7-4-14-6-16-7)12(22)15-5-11(20)21/h4,6-9H,1-3,5H2,(H,15,22)(H,17,19)(H,18,23)(H,20,21)/t7?,8-,9-/m0/s1 Yes check.svgY
    Key: VTKWFWXOVZIATL-NPPUSCPJSA-N Yes check.svgY
  • InChI=1/C13H17N5O5/c19-10-2-1-8(17-10)13(23)18-9(3-7-4-14-6-16-7)12(22)15-5-11(20)21/h4,6-9H,1-3,5H2,(H,15,22)(H,17,19)(H,18,23)(H,20,21)/t7?,8-,9-/m0/s1
    Key: VTKWFWXOVZIATL-NPPUSCPJBL
  • O=C2N[C@H](C(=O)N[C@H](C(=O)NCC(=O)O)CC/1/N=C\N=C\1)CC2
Properties
C13H17N5O5
Molar mass 323.30 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Pyroglutamyl-histidyl-glycine (pEHG) is an endogenous tripeptide that acts as a tissue-specific antimitotic and selectively inhibits the proliferation of colon epithelial cells. [1] Early research indicated that pEHG had anorectic effects in mice and was possibly involved in the pathophysiology of anorexia nervosa. [2] However, subsequent studies have found that pEHG lacks anorectic effects and does not alter food intake in mice. [3] [4]

Related Research Articles

<span class="mw-page-title-main">Tripeptide</span> Peptide consisting of three amino acids joined by peptide bonds

A tripeptide is a peptide derived from three amino acids joined by two or sometimes three peptide bonds. As for proteins, the function of peptides is determined by the constituent amino acids and their sequence. In terms of scientific investigations, the dominant tripeptide is glutathione (γ-L-Glutamyl-L-cysteinylglycine), which serves many roles in many forms of life.

Anti-inflammatory or antiphlogistic is the property of a substance or treatment that reduces inflammation or swelling. Anti-inflammatory drugs, also called anti-inflammatories, make up about half of analgesics. These drugs remedy pain by reducing inflammation as opposed to opioids, which affect the central nervous system to block pain signaling to the brain.

<span class="mw-page-title-main">Agouti-signaling protein</span> Protein-coding gene in the species Homo sapiens

Agouti-signaling protein is a protein that in humans is encoded by the ASIP gene. It is responsible for the distribution of melanin pigment in mammals. Agouti interacts with the melanocortin 1 receptor to determine whether the melanocyte produces phaeomelanin, or eumelanin. This interaction is responsible for making distinct light and dark bands in the hairs of animals such as the agouti, which the gene is named after. In other species such as horses, agouti signalling is responsible for determining which parts of the body will be red or black. Mice with wildtype agouti will be grey-brown, with each hair being partly yellow and partly black. Loss of function mutations in mice and other species cause black fur coloration, while mutations causing expression throughout the whole body in mice cause yellow fur and obesity.

<span class="mw-page-title-main">Glucagon-like peptide-1</span> Gastrointestinal peptide hormone Involved in glucose homeostasis

Glucagon-like peptide-1 (GLP-1) is a 30- or 31-amino-acid-long peptide hormone deriving from the tissue-specific posttranslational processing of the proglucagon peptide. It is produced and secreted by intestinal enteroendocrine L-cells and certain neurons within the nucleus of the solitary tract in the brainstem upon food consumption. The initial product GLP-1 (1–37) is susceptible to amidation and proteolytic cleavage, which gives rise to the two truncated and equipotent biologically active forms, GLP-1 (7–36) amide and GLP-1 (7–37). Active GLP-1 protein secondary structure includes two α-helices from amino acid position 13–20 and 24–35 separated by a linker region.

<span class="mw-page-title-main">Peptide YY</span> Peptide released from cells in the ileum and colon in response to feeding

Peptide YY (PYY) also known as peptide tyrosine tyrosine is a peptide that in humans is encoded by the PYY gene. Peptide YY is a short peptide released from cells in the ileum and colon in response to feeding. In the blood, gut, and other elements of periphery, PYY acts to reduce appetite; similarly, when injected directly into the central nervous system, PYY is also anorexigenic, i.e., it reduces appetite.

<span class="mw-page-title-main">Cocaine and amphetamine regulated transcript</span> Neuropeptide protein

Cocaine- and amphetamine-regulated transcript, also known as CART, is a neuropeptide protein that in humans is encoded by the CARTPT gene. CART appears to have roles in reward, feeding, and stress, and it has the functional properties of an endogenous psychostimulant.

<span class="mw-page-title-main">Nociceptin receptor</span> Protein-coding gene in the species Homo sapiens

The nociceptin opioid peptide receptor (NOP), also known as the nociceptin/orphanin FQ (N/OFQ) receptor or kappa-type 3 opioid receptor, is a protein that in humans is encoded by the OPRL1 gene. The nociceptin receptor is a member of the opioid subfamily of G protein-coupled receptors whose natural ligand is the 17 amino acid neuropeptide known as nociceptin (N/OFQ). This receptor is involved in the regulation of numerous brain activities, particularly instinctive and emotional behaviors. Antagonists targeting NOP are under investigation for their role as treatments for depression and Parkinson's disease, whereas NOP agonists have been shown to act as powerful, non-addictive painkillers in non-human primates.

Neuromedin U is a neuropeptide found in the brain of humans and other mammals, which has a number of diverse functions including contraction of smooth muscle, regulation of blood pressure, pain perception, appetite, bone growth, and hormone release. It was first isolated from the spinal cord in 1985, and named after its ability to cause smooth muscle contraction in the uterus.

Leukotriene B<sub>4</sub> receptor 2 Protein-coding gene in the species Homo sapiens

Leukotriene B4 receptor 2, also known as BLT2, BLT2 receptor, and BLTR2, is an Integral membrane protein that is encoded by the LTB4R2 gene in humans and the Ltbr2 gene in mice.

<span class="mw-page-title-main">Hydroxycarboxylic acid receptor 2</span> Protein-coding gene in the species Homo sapiens

Hydroxycarboxylic acid receptor 2 (HCA2), also known as GPR109A and niacin receptor 1 (NIACR1), is a protein which in humans is encoded (its formation is directed) by the HCAR2 gene and in rodents by the Hcar2 gene. The human HCAR2 gene is located on the long (i.e., "q") arm of chromosome 12 at position 24.31 (notated as 12q24.31). Like the two other hydroxycarboxylic acid receptors, HCA1 and HCA3, HCA2 is a G protein-coupled receptor (GPCR) located on the surface membrane of cells. HCA2 binds and thereby is activated by D-β-hydroxybutyric acid (hereafter termed β-hydroxybutyric acid), butyric acid, and niacin (also known as nicotinic acid). β-Hydroxybutyric and butyric acids are regarded as the endogenous agents that activate HCA2. Under normal conditions, niacin's blood levels are too low to do so: it is given as a drug in high doses in order to reach levels that activate HCA2.

<i>N</i>-Arachidonoyl dopamine Chemical compound

N-Arachidonoyl dopamine (NADA) is an endocannabinoid that acts as an agonist of the CB1 receptor and the transient receptor potential V1 (TRPV1) ion channel. NADA was first described as a putative endocannabinoid (agonist for the CB1 receptor) in 2000 and was subsequently identified as an endovanilloid (agonist for TRPV1) in 2002. NADA is an endogenous arachidonic acid based lipid found in the brain of rats, with especially high concentrations in the hippocampus, cerebellum, and striatum. It activates the TRPV1 channel with an EC50 of approximately of 50 nM which makes it the putative endogenous TRPV1 agonist.

<span class="mw-page-title-main">Thymulin</span> Chemical compound

Thymulin is a nonapeptide produced by two distinct epithelial populations in the thymus first described by Bach in 1977. It requires zinc for biological activity. Its peptide sequence is H-Pyr-Ala-Lys-Ser-Gln-Gly-Gly-Ser-Asn-OH.

<span class="mw-page-title-main">RB-101</span> Chemical compound

RB-101 is a drug that acts as an enkephalinase inhibitor, which is used in scientific research.

<span class="mw-page-title-main">Ro64-6198</span> Chemical compound

Ro64-6198 is an opioid drug used in scientific research. It acts as a potent and selective agonist for the nociceptin receptor, also known as the ORL-1 receptor, with over 100x selectivity over the other opioid receptors. It produces anxiolytic effects in animal studies equivalent to those of benzodiazepine drugs, but has no anticonvulsant effects and does not produce any overt effects on behaviour. However it does impair short-term memory, and counteracts stress-induced anorexia. It also has antitussive effects, and reduces the rewarding and analgesic effects of morphine, although it did not prevent the development of dependence. It has been shown to reduce alcohol self-administration in animals and suppressed relapses in animal models of alcoholism, and ORL-1 agonists may have application in the treatment of alcoholism.

Immune Selective Anti-Inflammatory Derivatives (ImSAIDs) are a class of peptides that have anti-inflammatory properties. ImSAIDs work by altering the activation and migration of inflammatory cells, which are immune cells responsible for amplifying the inflammatory response.

<span class="mw-page-title-main">Abnormal cannabidiol</span> Synthetic, cannabinoid-like compound

Abnormal cannabidiol (Abn-CBD) is a synthetic regioisomer of cannabidiol, which unlike most other cannabinoids produces vasodilator effects, lowers blood pressure, and induces cell migration, cell proliferation and mitogen-activated protein kinase activation in microglia, but without producing any psychoactive effects.

<span class="mw-page-title-main">Copper peptide GHK-Cu</span> Chemical compound

Copper peptide GHK-Cu is a naturally occurring copper complex of the tripeptide glycyl-L-histidyl-L-lysine. The tripeptide has strong affinity for copper(II) and was first isolated from human plasma. It can be found also in saliva and urine.

<i>N</i>-Arachidonylglycine Chemical compound

N-Arachidonylglycine (NAGly) is a carboxylic metabolite of the endocannabinoid anandamide (AEA). Since it was first synthesized in 1996, NAGly has been a primary focus of the relatively contemporary field of lipidomics due to its wide range of signaling targets in the brain, the immune system and throughout various other bodily systems. In combination with 2‐arachidonoyl glycerol (2‐AG), NAGly has enabled the identification of a family of lipids often referred to as endocannabinoids. Recently, NAGly has been found to bind to G-protein coupled receptor 18 (GPR18), the putative abnormal cannabidiol receptor. NaGly is an endogenous inhibitor of fatty acid amide hydrolase (FAAH) and thereby increases the ethanolamide endocannabinoids AEA, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) levels. NaGly is found throughout the body and research on its explicit functions is ongoing.

The opioid excess theory is a theory which postulates that autism is the result of a metabolic disorder in which opioid peptides produced through metabolism of gluten and casein pass through an abnormally permeable intestinal membrane and then proceed to exert an effect on neurotransmission through binding with opioid receptors. It is believed by advocates of this hypothesis that autistic children are unusually sensitive to gluten, which results in small bowel inflammation in these children, which in turn allows these opioid peptides to enter the brain.

hPG80 refers to the extracellular and oncogenic version of progastrin. This name first appeared in a scientific publication in January 2020. Until that date, scientific publications only mention 'progastrin', without necessarily explicitly specifying whether it is intracellular or extracellular in the tumor pathological setting.

References

  1. Reichelt, WH; Iversen, JG; Paulsen, JE; Elgjo, K; Reichelt, KL (May 2004). "Pyroglutamyl-histidyl-glycine, the endogenous colon mitosis inhibitor, regulates cyclic AMP level in non-tumorigenic colonic epithelial cells". Anticancer Research. 24 (3a): 1465–8. PMID   15274311.
  2. Trygstad, Olav; Foss, Irene; Edminson, Paul D.; Johansen, John H.; Reichelt, Karl L. (1 September 1978). "Humoral Control of Appetite: A Urinary Anorexigenic Peptide. Chromatographic Patterns of Urinary Peptides in Anorexia Nervosa". European Journal of Endocrinology. 89 (1): 196–208. doi:10.1530/acta.0.0890196. PMID   696172.
  3. Bauce, Lorenzo G.; Elliott, Crystal; Hughes, Rhiannon; Goren, H. Joseph (1 January 1981). "Synthesis and assay for activity of a proposed anorexogenic agent, L -pyroglutamyl- L -histidyl-glycine". Canadian Journal of Physiology and Pharmacology. 59 (1): 88–90. doi:10.1139/y81-015. PMID   7214215.
  4. Nance, Dwight M.; Coy, David H.; Kastin, Abba J. (December 1979). "Experiments with a reported anorexigenic tripeptide: PyroGluHisGlyOH". Pharmacology Biochemistry and Behavior. 11 (6): 733–735. doi:10.1016/0091-3057(79)90273-9. PMID   538064. S2CID   30289485.