Quantum graph

Last updated

In mathematics and physics, a quantum graph is a linear, network-shaped structure of vertices connected on edges (i.e., a graph) in which each edge is given a length and where a differential (or pseudo-differential) equation is posed on each edge. An example would be a power network consisting of power lines (edges) connected at transformer stations (vertices); the differential equations would then describe the voltage along each of the lines, with boundary conditions for each edge provided at the adjacent vertices ensuring that the current added over all edges adds to zero at each vertex.

Contents

Quantum graphs were first studied by Linus Pauling as models of free electrons in organic molecules in the 1930s. They also arise in a variety of mathematical contexts, [1] e.g. as model systems in quantum chaos, in the study of waveguides, in photonic crystals and in Anderson localization, or as limit on shrinking thin wires. Quantum graphs have become prominent models in mesoscopic physics used to obtain a theoretical understanding of nanotechnology. Another, more simple notion of quantum graphs was introduced by Freedman et al. [2]

Aside from actually solving the differential equations posed on a quantum graph for purposes of concrete applications, typical questions that arise are those of controllability (what inputs have to be provided to bring the system into a desired state, for example providing sufficient power to all houses on a power network) and identifiability (how and where one has to measure something to obtain a complete picture of the state of the system, for example measuring the pressure of a water pipe network to determine whether or not there is a leaking pipe).

Metric graphs

A metric graph embedded in the plane with three open edges. The dashed line denotes the metric distance between two points
x
{\displaystyle x}
and
y
{\displaystyle y}
. Quantumgraph.png
A metric graph embedded in the plane with three open edges. The dashed line denotes the metric distance between two points and .

A metric graph is a graph consisting of a set of vertices and a set of edges where each edge has been associated with an interval so that is the coordinate on the interval, the vertex corresponds to and to or vice versa. The choice of which vertex lies at zero is arbitrary with the alternative corresponding to a change of coordinate on the edge. The graph has a natural metric: for two points on the graph, is the shortest distance between them where distance is measured along the edges of the graph.

Open graphs: in the combinatorial graph model edges always join pairs of vertices however in a quantum graph one may also consider semi-infinite edges. These are edges associated with the interval attached to a single vertex at . A graph with one or more such open edges is referred to as an open graph.

Quantum graphs

Quantum graphs are metric graphs equipped with a differential (or pseudo-differential) operator acting on functions on the graph. A function on a metric graph is defined as the -tuple of functions on the intervals. The Hilbert space of the graph is where the inner product of two functions is

may be infinite in the case of an open edge. The simplest example of an operator on a metric graph is the Laplace operator. The operator on an edge is where is the coordinate on the edge. To make the operator self-adjoint a suitable domain must be specified. This is typically achieved by taking the Sobolev space of functions on the edges of the graph and specifying matching conditions at the vertices.

The trivial example of matching conditions that make the operator self-adjoint are the Dirichlet boundary conditions, for every edge. An eigenfunction on a finite edge may be written as

for integer . If the graph is closed with no infinite edges and the lengths of the edges of the graph are rationally independent then an eigenfunction is supported on a single graph edge and the eigenvalues are . The Dirichlet conditions don't allow interaction between the intervals so the spectrum is the same as that of the set of disconnected edges.

More interesting self-adjoint matching conditions that allow interaction between edges are the Neumann or natural matching conditions. A function in the domain of the operator is continuous everywhere on the graph and the sum of the outgoing derivatives at a vertex is zero,

where if the vertex is at and if is at .

The properties of other operators on metric graphs have also been studied.

where is a "magnetic vector potential" on the edge and is a scalar potential.

Theorems

All self-adjoint matching conditions of the Laplace operator on a graph can be classified according to a scheme of Kostrykin and Schrader. In practice, it is often more convenient to adopt a formalism introduced by Kuchment, see, [3] which automatically yields an operator in variational form.

Let be a vertex with edges emanating from it. For simplicity we choose the coordinates on the edges so that lies at for each edge meeting at . For a function on the graph let

Matching conditions at can be specified by a pair of matrices and through the linear equation,

The matching conditions define a self-adjoint operator if has the maximal rank and

The spectrum of the Laplace operator on a finite graph can be conveniently described using a scattering matrix approach introduced by Kottos and Smilansky . [4] [5] The eigenvalue problem on an edge is,

So a solution on the edge can be written as a linear combination of plane waves.

where in a time-dependent Schrödinger equation is the coefficient of the outgoing plane wave at and coefficient of the incoming plane wave at . The matching conditions at define a scattering matrix

The scattering matrix relates the vectors of incoming and outgoing plane-wave coefficients at , . For self-adjoint matching conditions is unitary. An element of of is a complex transition amplitude from a directed edge to the edge which in general depends on . However, for a large class of matching conditions the S-matrix is independent of . With Neumann matching conditions for example

Substituting in the equation for produces -independent transition amplitudes

where is the Kronecker delta function that is one if and zero otherwise. From the transition amplitudes we may define a matrix

is called the bond scattering matrix and can be thought of as a quantum evolution operator on the graph. It is unitary and acts on the vector of plane-wave coefficients for the graph where is the coefficient of the plane wave traveling from to . The phase is the phase acquired by the plane wave when propagating from vertex to vertex .

Quantization condition: An eigenfunction on the graph can be defined through its associated plane-wave coefficients. As the eigenfunction is stationary under the quantum evolution a quantization condition for the graph can be written using the evolution operator.

Eigenvalues occur at values of where the matrix has an eigenvalue one. We will order the spectrum with .

The first trace formula for a graph was derived by Roth (1983). In 1997 Kottos and Smilansky used the quantization condition above to obtain the following trace formula for the Laplace operator on a graph when the transition amplitudes are independent of . The trace formula links the spectrum with periodic orbits on the graph.

is called the density of states. The right hand side of the trace formula is made up of two terms, the Weyl term is the mean separation of eigenvalues and the oscillating part is a sum over all periodic orbits on the graph. is the length of the orbit and is the total length of the graph. For an orbit generated by repeating a shorter primitive orbit, counts the number of repartitions. is the product of the transition amplitudes at the vertices of the graph around the orbit.

Applications

Naphthalene molecule Naphthalene2.png
Naphthalene molecule

Quantum graphs were first employed in the 1930s to model the spectrum of free electrons in organic molecules like Naphthalene, see figure. As a first approximation the atoms are taken to be vertices while the σ-electrons form bonds that fix a frame in the shape of the molecule on which the free electrons are confined.

A similar problem appears when considering quantum waveguides. These are mesoscopic systems - systems built with a width on the scale of nanometers. A quantum waveguide can be thought of as a fattened graph where the edges are thin tubes. The spectrum of the Laplace operator on this domain converges to the spectrum of the Laplace operator on the graph under certain conditions. Understanding mesoscopic systems plays an important role in the field of nanotechnology.

In 1997 [6] Kottos and Smilansky proposed quantum graphs as a model to study quantum chaos, the quantum mechanics of systems that are classically chaotic. Classical motion on the graph can be defined as a probabilistic Markov chain where the probability of scattering from edge to edge is given by the absolute value of the quantum transition amplitude squared, . For almost all finite connected quantum graphs the probabilistic dynamics is ergodic and mixing, in other words chaotic.

Quantum graphs embedded in two or three dimensions appear in the study of photonic crystals. [7] In two dimensions a simple model of a photonic crystal consists of polygonal cells of a dense dielectric with narrow interfaces between the cells filled with air. Studying dielectric modes that stay mostly in the dielectric gives rise to a pseudo-differential operator on the graph that follows the narrow interfaces.

Periodic quantum graphs like the lattice in are common models of periodic systems and quantum graphs have been applied to the study the phenomena of Anderson localization where localized states occur at the edge of spectral bands in the presence of disorder.

See also

Related Research Articles

In graph theory, an expander graph is a sparse graph that has strong connectivity properties, quantified using vertex, edge or spectral expansion. Expander constructions have spawned research in pure and applied mathematics, with several applications to complexity theory, design of robust computer networks, and the theory of error-correcting codes.

<span class="mw-page-title-main">Feynman diagram</span> Pictorial representation of the behavior of subatomic particles

In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduced the diagrams in 1948. The interaction of subatomic particles can be complex and difficult to understand; Feynman diagrams give a simple visualization of what would otherwise be an arcane and abstract formula. According to David Kaiser, "Since the middle of the 20th century, theoretical physicists have increasingly turned to this tool to help them undertake critical calculations. Feynman diagrams have revolutionized nearly every aspect of theoretical physics." While the diagrams are applied primarily to quantum field theory, they can also be used in other areas of physics, such as solid-state theory. Frank Wilczek wrote that the calculations that won him the 2004 Nobel Prize in Physics "would have been literally unthinkable without Feynman diagrams, as would [Wilczek's] calculations that established a route to production and observation of the Higgs particle."

<span class="mw-page-title-main">Simplex</span> Multi-dimensional generalization of triangle

In geometry, a simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. For example,

In graph theory, a perfect matching in a graph is a matching that covers every vertex of the graph. More formally, given a graph G = (V, E), a perfect matching in G is a subset M of edge set E, such that every vertex in the vertex set V is adjacent to exactly one edge in M.

In linear algebra, the permanent of a square matrix is a function of the matrix similar to the determinant. The permanent, as well as the determinant, is a polynomial in the entries of the matrix. Both are special cases of a more general function of a matrix called the immanant.

<span class="mw-page-title-main">Graph (discrete mathematics)</span> Vertices connected in pairs by edges

In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects are represented by abstractions called vertices and each of the related pairs of vertices is called an edge. Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges.

<span class="mw-page-title-main">Maximum flow problem</span> Computational problem in graph theory

In optimization theory, maximum flow problems involve finding a feasible flow through a flow network that obtains the maximum possible flow rate.

In graph theory, the resistance distance between two vertices of a simple, connected graph, G, is equal to the resistance between two equivalent points on an electrical network, constructed so as to correspond to G, with each edge being replaced by a resistance of one ohm. It is a metric on graphs.

In computer science, a topological sort or topological ordering of a directed graph is a linear ordering of its vertices such that for every directed edge (u,v) from vertex u to vertex v, u comes before v in the ordering. For instance, the vertices of the graph may represent tasks to be performed, and the edges may represent constraints that one task must be performed before another; in this application, a topological ordering is just a valid sequence for the tasks. Precisely, a topological sort is a graph traversal in which each node v is visited only after all its dependencies are visited. A topological ordering is possible if and only if the graph has no directed cycles, that is, if it is a directed acyclic graph (DAG). Any DAG has at least one topological ordering, and algorithms are known for constructing a topological ordering of any DAG in linear time. Topological sorting has many applications, especially in ranking problems such as feedback arc set. Topological sorting is possible even when the DAG has disconnected components.

In mathematics, the discrete Laplace operator is an analog of the continuous Laplace operator, defined so that it has meaning on a graph or a discrete grid. For the case of a finite-dimensional graph, the discrete Laplace operator is more commonly called the Laplacian matrix.

In the mathematical field of graph theory, the Laplacian matrix, also called the graph Laplacian, admittance matrix, Kirchhoff matrix or discrete Laplacian, is a matrix representation of a graph. Named after Pierre-Simon Laplace, the graph Laplacian matrix can be viewed as a matrix form of the negative discrete Laplace operator on a graph approximating the negative continuous Laplacian obtained by the finite difference method.

<span class="mw-page-title-main">Centrality</span> Degree of connectedness within a graph

In graph theory and network analysis, indicators of centrality assign numbers or rankings to nodes within a graph corresponding to their network position. Applications include identifying the most influential person(s) in a social network, key infrastructure nodes in the Internet or urban networks, super-spreaders of disease, and brain networks. Centrality concepts were first developed in social network analysis, and many of the terms used to measure centrality reflect their sociological origin.

In quantum computing, a graph state is a special type of multi-qubit state that can be represented by a graph. Each qubit is represented by a vertex of the graph, and there is an edge between every interacting pair of qubits. In particular, they are a convenient way of representing certain types of entangled states.

In graph theory, a graph is said to be a pseudorandom graph if it obeys certain properties that random graphs obey with high probability. There is no concrete definition of graph pseudorandomness, but there are many reasonable characterizations of pseudorandomness one can consider.

In computer science, the Hopcroft–Karp algorithm is an algorithm that takes a bipartite graph as input and produces a maximum-cardinality matching as output — a set of as many edges as possible with the property that no two edges share an endpoint. It runs in time in the worst case, where is set of edges in the graph, is set of vertices of the graph, and it is assumed that . In the case of dense graphs the time bound becomes , and for sparse random graphs it runs in time with high probability.

In extremal graph theory, the forbidden subgraph problem is the following problem: given a graph , find the maximal number of edges an -vertex graph can have such that it does not have a subgraph isomorphic to . In this context, is called a forbidden subgraph.

In mathematics, the Kontsevich quantization formula describes how to construct a generalized ★-product operator algebra from a given arbitrary finite-dimensional Poisson manifold. This operator algebra amounts to the deformation quantization of the corresponding Poisson algebra. It is due to Maxim Kontsevich.

<span class="mw-page-title-main">Graphon</span>

In graph theory and statistics, a graphon is a symmetric measurable function , that is important in the study of dense graphs. Graphons arise both as a natural notion for the limit of a sequence of dense graphs, and as the fundamental defining objects of exchangeable random graph models. Graphons are tied to dense graphs by the following pair of observations: the random graph models defined by graphons give rise to dense graphs almost surely, and, by the regularity lemma, graphons capture the structure of arbitrary large dense graphs.

The blow-up lemma, proved by János Komlós, Gábor N. Sárközy, and Endre Szemerédi in 1997, is an important result in extremal graph theory, particularly within the context of the regularity method. It states that the regular pairs in the statement of Szemerédi's regularity lemma behave like complete bipartite graphs in the context of embedding spanning graphs of bounded degree.

In the context of quantum computing, the quantum walk search is a quantum algorithm for finding a marked node in a graph.

References

  1. Berkolaiko, Gregory; Carlson, Robert; Kuchment, Peter; Fulling, Stephen (2006). Quantum Graphs and Their Applications (Contemporary Mathematics): Proceedings of an AMS-IMS-SIAM Joint Summer Research Conference on Quantum Graphs and Their Applications. Vol. 415. American Mathematical Society. ISBN   978-0821837658.
  2. Freedman, Michael; Lovász, László; Schrijver, Alexander (2007). "Reflection positivity, rank connectivity, and homomorphism of graphs". Journal of the American Mathematical Society. 20 (1): 37–52. arXiv: math/0404468 . Bibcode:2007JAMS...20...37F. doi:10.1090/S0894-0347-06-00529-7. ISSN   0894-0347. MR   2257396. S2CID   8208923.
  3. Kuchment, Peter (2004). "Quantum graphs: I. Some basic structures". Waves in Random Media. 14 (1): S107–S128. Bibcode:2004WRM....14S.107K. doi:10.1088/0959-7174/14/1/014. ISSN   0959-7174. S2CID   16874849.
  4. Kottos, Tsampikos; Smilansky, Uzy (1999). "Periodic Orbit Theory and Spectral Statistics for Quantum Graphs". Annals of Physics. 274 (1): 76–124. arXiv: chao-dyn/9812005 . Bibcode:1999AnPhy.274...76K. doi:10.1006/aphy.1999.5904. ISSN   0003-4916. S2CID   17510999.
  5. Gnutzmann∥, Sven; Smilansky, Uzy (2006). "Quantum graphs: Applications to quantum chaos and universal spectral statistics". Advances in Physics. 55 (5–6): 527–625. arXiv: nlin/0605028 . Bibcode:2006AdPhy..55..527G. doi:10.1080/00018730600908042. ISSN   0001-8732. S2CID   119424306.
  6. Kottos, Tsampikos; Smilansky, Uzy (1997). "Quantum Chaos on Graphs". Physical Review Letters. 79 (24): 4794–4797. Bibcode:1997PhRvL..79.4794K. doi:10.1103/PhysRevLett.79.4794. ISSN   0031-9007.
  7. Kuchment, Peter; Kunyansky, Leonid (2002). "Differential Operators on Graphs and Photonic Crystals". Advances in Computational Mathematics. 16 (24): 263–290. doi:10.1023/A:1014481629504. S2CID   17506556.