Quantum image processing

Last updated

Quantum image processing (QIMP) is using quantum computing or quantum information processing to create and work with quantum images. [1] [2]

Contents

Due to some of the properties inherent to quantum computation, notably entanglement and parallelism, it is hoped that QIMP technologies will offer capabilities and performances that surpass their traditional equivalents, in terms of computing speed, security, and minimum storage requirements. [2] [3]

Background

A. Y. Vlasov's work [4] in 1997 focused on the use of a quantum system to recognize orthogonal images. This was followed by efforts using quantum algorithms to search specific patterns in binary images [5] and detect the posture of certain targets. [6] Notably, more optics-based interpretation for quantum imaging were initially experimentally demonstrated in [7] and formalized in [8] after seven years.

In 2003, Salvador Venegas-Andraca and S. Bose presented Qubit Lattice, the first published general model for storing, processing and retrieving images using quantum systems. [9] [10] Later on, in 2005, Latorre proposed another kind of representation, called the Real Ket, [11] whose purpose was to encode quantum images as a basis for further applications in QIMP. Furthermore, in 2010 Venegas-Andraca and Ball presented a method for storing and retrieving binary geometrical shapes in quantum mechanical systems in which it is shown that maximally entangled qubits can be used to reconstruct images without using any additional information. [12]

Technically, these pioneering efforts with the subsequent studies related to them can be classified into three main groups: [3]

A survey of quantum image representation has been published in. [14] Furthermore, the recently published book Quantum Image Processing [15] provides a comprehensive introduction to quantum image processing, which focuses on extending conventional image processing tasks to the quantum computing frameworks. It summarizes the available quantum image representations and their operations, reviews the possible quantum image applications and their implementation, and discusses the open questions and future development trends.

Quantum image manipulations

A lot of the effort in QIMP has been focused on designing algorithms to manipulate the position and color information encoded using flexible representation of quantum images (FRQI) and its many variants. For instance, FRQI-based fast geometric transformations including (two-point) swapping, flip, (orthogonal) rotations [16] and restricted geometric transformations to constrain these operations to a specified area of an image [17] were initially proposed. Recently, NEQR-based quantum image translation to map the position of each picture element in an input image into a new position in an output image [18] and quantum image scaling to resize a quantum image [19] were discussed. While FRQI-based general form of color transformations were first proposed by means of the single qubit gates such as X, Z, and H gates. [20] Later, Multi-Channel Quantum Image-based channel of interest (CoI) operator to entail shifting the grayscale value of the preselected color channel and the channel swapping (CS) operator to swap the grayscale values between two channels have been fully discussed. [21]

To illustrate the feasibility and capability of QIMP algorithms and application, researchers always prefer to simulate the digital image processing tasks on the basis of the QIRs that we already have. By using the basic quantum gates and the aforementioned operations, so far, researchers have contributed to quantum image feature extraction, [22] quantum image segmentation, [23] quantum image morphology, [24] quantum image comparison, [25] quantum image filtering, [26] quantum image classification, [27] quantum image stabilization, [28] among others. In particular, QIMP-based security technologies have attracted extensive interest of researchers as presented in the ensuing discussions. Similarly, these advancements have led to many applications in the areas of watermarking, [29] [30] [31] encryption, [32] and steganography [33] etc., which form the core security technologies highlighted in this area.

In general, the work pursued by the researchers in this area are focused on expanding the applicability of QIMP to realize more classical-like digital image processing algorithms; propose technologies to physically realize the QIMP hardware; or simply to note the likely challenges that could impede the realization of some QIMP protocols.

Quantum image transform

By encoding and processing the image information in quantum-mechanical systems, a framework of quantum image processing is presented, where a pure quantum state encodes the image information: to encode the pixel values in the probability amplitudes and the pixel positions in the computational basis states.

Given an image , where represents the pixel value at position with and , a vector with elements can be formed by letting the first elements of be the first column of , the next elements the second column, etc.

A large class of image operations is linear, e.g., unitary transformations, convolutions, and linear filtering. In the quantum computing, the linear transformation can be represented as with the input image state and the output image state . A unitary transformation can be implemented as a unitary evolution. Some basic and commonly used image transforms (e.g., the Fourier, Hadamard, and Haar wavelet transforms) can be expressed in the form , with the resulting image and a row (column) transform matrix .

The corresponding unitary operator can then be written as . Several commonly used two-dimensional image transforms, such as the Haar wavelet, Fourier, and Hadamard transforms, are experimentally demonstrated on a quantum computer, [34] with exponential speedup over their classical counterparts. In addition, a novel highly efficient quantum algorithm is proposed and experimentally implemented for detecting the boundary between different regions of a picture: It requires only one single-qubit gate in the processing stage, independent of the size of the picture.

See also

Related Research Articles

<span class="mw-page-title-main">Quantum information</span> Information held in the state of a quantum system

Quantum information is the information of the state of a quantum system. It is the basic entity of study in quantum information theory, and can be manipulated using quantum information processing techniques. Quantum information refers to both the technical definition in terms of Von Neumann entropy and the general computational term.

<span class="mw-page-title-main">Qubit</span> Basic unit of quantum information

In quantum computing, a qubit or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state quantum-mechanical system, one of the simplest quantum systems displaying the peculiarity of quantum mechanics. Examples include the spin of the electron in which the two levels can be taken as spin up and spin down; or the polarization of a single photon in which the two spin states can also be measured as horizontal and vertical linear polarization. In a classical system, a bit would have to be in one state or the other. However, quantum mechanics allows the qubit to be in a coherent superposition of multiple states simultaneously, a property that is fundamental to quantum mechanics and quantum computing.

Shor's algorithm is a quantum algorithm for finding the prime factors of an integer. It was developed in 1994 by the American mathematician Peter Shor. It is one of the few known quantum algorithms with compelling potential applications and strong evidence of superpolynomial speedup compared to best known classical algorithms. On the other hand, factoring numbers of practical significance requires far more qubits than available in the near future. Another concern is that noise in quantum circuits may undermine results, requiring additional qubits for quantum error correction.

In logic circuits, the Toffoli gate, invented by Tommaso Toffoli, is a universal reversible logic gate, which means that any classical reversible circuit can be constructed from Toffoli gates. It is also known as the "controlled-controlled-not" gate, which describes its action. It has 3-bit inputs and outputs; if the first two bits are both set to 1, it inverts the third bit, otherwise all bits stay the same.

In quantum computing, a quantum algorithm is an algorithm which runs on a realistic model of quantum computation, the most commonly used model being the quantum circuit model of computation. A classical algorithm is a finite sequence of instructions, or a step-by-step procedure for solving a problem, where each step or instruction can be performed on a classical computer. Similarly, a quantum algorithm is a step-by-step procedure, where each of the steps can be performed on a quantum computer. Although all classical algorithms can also be performed on a quantum computer, the term quantum algorithm is usually used for those algorithms which seem inherently quantum, or use some essential feature of quantum computation such as quantum superposition or quantum entanglement.

Superconducting quantum computing is a branch of solid state quantum computing that implements superconducting electronic circuits using superconducting qubits as artificial atoms, or quantum dots. For superconducting qubits, the two logic states are the ground state and the excited state, denoted respectively. Research in superconducting quantum computing is conducted by companies such as Google, IBM, IMEC, BBN Technologies, Rigetti, and Intel. Many recently developed QPUs use superconducting architecture.

<span class="mw-page-title-main">Trapped-ion quantum computer</span> Proposed quantum computer implementation

A trapped-ion quantum computer is one proposed approach to a large-scale quantum computer. Ions, or charged atomic particles, can be confined and suspended in free space using electromagnetic fields. Qubits are stored in stable electronic states of each ion, and quantum information can be transferred through the collective quantized motion of the ions in a shared trap. Lasers are applied to induce coupling between the qubit states or coupling between the internal qubit states and the external motional states.

<span class="mw-page-title-main">Quantum neural network</span> Quantum Mechanics in Neural Networks

Quantum neural networks are computational neural network models which are based on the principles of quantum mechanics. The first ideas on quantum neural computation were published independently in 1995 by Subhash Kak and Ron Chrisley, engaging with the theory of quantum mind, which posits that quantum effects play a role in cognitive function. However, typical research in quantum neural networks involves combining classical artificial neural network models with the advantages of quantum information in order to develop more efficient algorithms. One important motivation for these investigations is the difficulty to train classical neural networks, especially in big data applications. The hope is that features of quantum computing such as quantum parallelism or the effects of interference and entanglement can be used as resources. Since the technological implementation of a quantum computer is still in a premature stage, such quantum neural network models are mostly theoretical proposals that await their full implementation in physical experiments.

A topological quantum computer is a theoretical quantum computer proposed by Russian-American physicist Alexei Kitaev in 1997. It employs quasiparticles in two-dimensional systems, called anyons, whose world lines pass around one another to form braids in a three-dimensional spacetime. These braids form the logic gates that make up the computer. The advantage of a quantum computer based on quantum braids over using trapped quantum particles is that the former is much more stable. Small, cumulative perturbations can cause quantum states to decohere and introduce errors in the computation, but such small perturbations do not change the braids' topological properties. This is like the effort required to cut a string and reattach the ends to form a different braid, as opposed to a ball bumping into a wall.

Quantum annealing (QA) is an optimization process for finding the global minimum of a given objective function over a given set of candidate solutions, by a process using quantum fluctuations. Quantum annealing is used mainly for problems where the search space is discrete with many local minima; such as finding the ground state of a spin glass or the traveling salesman problem. The term "quantum annealing" was first proposed in 1988 by B. Apolloni, N. Cesa Bianchi and D. De Falco as a quantum-inspired classical algorithm. It was formulated in its present form by T. Kadowaki and H. Nishimori in 1998 though an imaginary-time variant without quantum coherence had been discussed by A. B. Finnila, M. A. Gomez, C. Sebenik and J. D. Doll in 1994.

Quantum walks are quantum analogues of classical random walks. In contrast to the classical random walk, where the walker occupies definite states and the randomness arises due to stochastic transitions between states, in quantum walks randomness arises through: (1) quantum superposition of states, (2) non-random, reversible unitary evolution and (3) collapse of the wave function due to state measurements.

Adiabatic quantum computation (AQC) is a form of quantum computing which relies on the adiabatic theorem to perform calculations and is closely related to quantum annealing.

Quantum block codes are useful in quantum computing and in quantum communications. The encoding circuit for a large block code typically has a high complexity although those for modern codes do have lower complexity.

Linear optical quantum computing or linear optics quantum computation (LOQC), also photonic quantum computing (PQC), is a paradigm of quantum computation, allowing (under certain conditions, described below) universal quantum computation. LOQC uses photons as information carriers, mainly uses linear optical elements, or optical instruments (including reciprocal mirrors and waveplates) to process quantum information, and uses photon detectors and quantum memories to detect and store quantum information.

<span class="mw-page-title-main">Quantum machine learning</span> Interdisciplinary research area at the intersection of quantum physics and machine learning

Quantum machine learning is the integration of quantum algorithms within machine learning programs.

Andrew MacGregor Childs is an American computer scientist and physicist known for his work on quantum computing. He is currently a professor in the department of computer science and Institute for Advanced Computer Studies at the University of Maryland. He also co-directs the Joint Center for Quantum Information and Computer Science, a partnership between the University of Maryland and the National Institute of Standards and Technology.

IBM Quantum Platform is an online platform allowing public and premium access to cloud-based quantum computing services provided by IBM. This includes access to a set of IBM's prototype quantum processors, a set of tutorials on quantum computation, and access to an interactive textbook. As of February 2021, there are over 20 devices on the service, six of which are freely available for the public. This service can be used to run algorithms and experiments, and explore tutorials and simulations around what might be possible with quantum computing.

This glossary of quantum computing is a list of definitions of terms and concepts used in quantum computing, its sub-disciplines, and related fields.

<span class="mw-page-title-main">Jingbo Wang</span> Australian quantum physicist

Jingbo Wang is an Australian quantum physicist working in the area of quantum simulation, quantum algorithms, and quantum information science.

In the context of quantum computing, the quantum walk search is a quantum algorithm for finding a marked node in a graph.

References

  1. Venegas-Andraca, Salvador E. (2005). Discrete Quantum Walks and Quantum Image Processing (DPhil thesis). The University of Oxford.
  2. 1 2 3 4 Iliyasu, A.M. (2013). "Towards realising secure and efficient image and video processing applications on quantum computers". Entropy. 15 (8): 2874–2974. Bibcode:2013Entrp..15.2874I. doi: 10.3390/e15082874 .
  3. 1 2 Yan, F.; Iliyasu, A.M.; Le, P.Q. (2017). "Quantum image processing: A review of advances in its security technologies". International Journal of Quantum Information. 15 (3): 1730001–44. Bibcode:2017IJQI...1530001Y. doi: 10.1142/S0219749917300017 .
  4. Vlasov, A.Y. (1997). "Quantum computations and images recognition". arXiv: quant-ph/9703010 . Bibcode:1997quant.ph..3010V.{{cite journal}}: Cite journal requires |journal= (help)
  5. Schutzhold, R. (2003). "Pattern recognition on a quantum computer". Physical Review A. 67 (6): 062311. arXiv: quant-ph/0208063 . Bibcode:2003PhRvA..67f2311S. doi:10.1103/PhysRevA.67.062311.
  6. Beach, G.; Lomont, C.; Cohen, C. (2003). "Quantum image processing (QuIP)". 32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings. pp. 39–40. doi:10.1109/AIPR.2003.1284246. ISBN   0-7695-2029-4. S2CID   32051928.
  7. Pittman, T.B.; Shih, Y.H.; Strekalov, D.V. (1995). "Optical imaging by means of two-photon quantum entanglement". Physical Review A. 52 (5): R3429–R3432. Bibcode:1995PhRvA..52.3429P. doi:10.1103/PhysRevA.52.R3429. PMID   9912767.
  8. Lugiato, L.A.; Gatti, A.; Brambilla, E. (2002). "Quantum imaging". Journal of Optics B. 4 (3): S176–S183. arXiv: quant-ph/0203046 . Bibcode:2002JOptB...4S.176L. doi:10.1088/1464-4266/4/3/372. S2CID   9640455.
  9. Venegas-Andraca, S.E.; Bose, S. (2003). "Quantum Computation and Image Processing: New Trends in Artificial Intelligence" (PDF). Proceedings of the 2003 IJCAI International Conference on Artificial Intelligence: 1563–1564.
  10. Venegas-Andraca, S.E.; Bose, S. (2003). "Storing, processing, and retrieving an image using quantum mechanics". In Donkor, Eric; Pirich, Andrew R; Brandt, Howard E (eds.). Quantum Information and Computation. Vol. 5105. pp. 134–147. Bibcode:2003SPIE.5105..137V. doi:10.1117/12.485960. S2CID   120495441.{{cite book}}: |journal= ignored (help)
  11. Latorre, J.I. (2005). "Image compression and entanglement". arXiv: quant-ph/0510031 . Bibcode:2005quant.ph.10031L.{{cite journal}}: Cite journal requires |journal= (help)
  12. Venegas-Andraca, S.E.; Ball, J. (2010). "Processing Images in Entangled Quantum Systems". Quantum Informatiom Processing. 9 (1): 1–11. doi:10.1007/s11128-009-0123-z. S2CID   34988263.
  13. Gatti, A.; Brambilla, E. (2008). "Quantum imaging". Progress in Optics. 51 (7): 251–348. doi:10.1016/S0079-6638(07)51005-X.
  14. Yan, F.; Iliyasu, A.M.; Venegas-Andraca, S.E. (2016). "A survey of quantum image representations". Quantum Informatiom Processing. 15 (1): 1–35. Bibcode:2016QuIP...15....1Y. doi:10.1007/s11128-015-1195-6. S2CID   31229136.
  15. Yan, Fei; Venegas-Andraca, Salvador E. (2020). Quantum Image Processing. Springer. ISBN   978-9813293304.
  16. Le, P.; Iliyasu, A.; Dong, F.; Hirota, K. (2010). "Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state". IAENG International Journal of Applied Mathematics. 40 (3): 113–123.
  17. Le, P.; Iliyasu, A.; Dong, F.; Hirota, K. (2011). "Strategies for designing geometric transformations on quantum images" (PDF). Theoretical Computer Science. 412 (15): 1406–1418. doi: 10.1016/j.tcs.2010.11.029 .
  18. Wang, J.; Jiang, N.; Wang, L. (2015). "Quantum image translation". Quantum Information Processing. 14 (5): 1589–1604. Bibcode:2015QuIP...14.1589W. doi:10.1007/s11128-014-0843-6. S2CID   33839291.
  19. Jiang, N.; Wang, J.; Mu, Y. (2015). "Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio". Quantum Information Processing. 14 (11): 4001–4026. Bibcode:2015QuIP...14.4001J. doi:10.1007/s11128-015-1099-5. S2CID   30804812.
  20. Le, P.; Iliyasu, A.; Dong, F.; Hirota, K. (2011). "Efficient colour transformations on quantum image". Journal of Advanced Computational Intelligence and Intelligent Informatics. 15 (6): 698–706. doi: 10.20965/jaciii.2011.p0698 .
  21. Sun, B.; Iliyasu, A.; Yan, F.; Garcia, J.; Dong, F.; Al-Asmari, A. (2014). "Multi-channel information operations on quantum images". Journal of Advanced Computational Intelligence and Intelligent Informatics. 18 (2): 140–149. doi: 10.20965/jaciii.2014.p0140 .
  22. Zhang, Y.; Lu, K.; Xu, K.; Gao, Y.; Wilson, R. (2015). "Local feature point extraction for quantum images". Quantum Information Processing. 14 (5): 1573–1588. Bibcode:2015QuIP...14.1573Z. doi:10.1007/s11128-014-0842-7. S2CID   20213446.
  23. Caraiman, S.; Manta, V. (2014). "Histogram-based segmentation of quantum images". Theoretical Computer Science. 529: 46–60. doi: 10.1016/j.tcs.2013.08.005 .
  24. Yuan, S.; Mao, X.; Li, T.; Xue, Y.; Chen, L.; Xiong, Q. (2015). "Quantum morphology operations based on quantum representation model". Quantum Information Processing. 14 (5): 1625–1645. Bibcode:2015QuIP...14.1625Y. doi:10.1007/s11128-014-0862-3. S2CID   44828546.
  25. Yan, F.; Iliyasu, A.; Le, P.; Sun, B.; Dong, F.; Hirota, K. (2013). "A parallel comparison of multiple pairs of images on quantum computers". International Journal of Innovative Computing and Applications. 5 (4): 199–212. doi:10.1504/IJICA.2013.062955.
  26. Caraiman, S.; Manta, V. (2013). "Quantum image filtering in the frequency domain". Advances in Electrical and Computer Engineering. 13 (3): 77–84. doi: 10.4316/AECE.2013.03013 .
  27. Ruan, Y.; Chen, H.; Tan, J. (2016). "Quantum computation for large-scale image classification". Quantum Information Processing. 15 (10): 4049–4069. Bibcode:2016QuIP...15.4049R. doi:10.1007/s11128-016-1391-z. S2CID   27476075.
  28. Yan, F.; Iliyasu, A.; Yang, H.; Hirota, K. (2016). "Strategy for quantum image stabilization". Science China Information Sciences. 59 (5): 052102. doi:10.1007/s11432-016-5541-9. S2CID   255200782.
  29. Iliyasu, A.; Le, P.; Dong, F.; Hirota, K. (2012). "Watermarking and authentication of quantum images based on restricted geometric transformations". Information Sciences. 186 (1): 126–149. doi:10.1016/j.ins.2011.09.028.
  30. Heidari, S.; Naseri, M. (2016). "A Novel Lsb based Quantum Watermarking". International Journal of Theoretical Physics. 55 (10): 4205–4218. Bibcode:2016IJTP...55.4205H. doi:10.1007/s10773-016-3046-3. S2CID   124870364.
  31. Zhang, W.; Gao, F.; Liu, B.; Jia, H. (2013). "A quantum watermark protocol". International Journal of Theoretical Physics. 52 (2): 504–513. Bibcode:2013IJTP...52..504Z. doi:10.1007/s10773-012-1354-9. S2CID   122413780.
  32. Zhou, R.; Wu, Q.; Zhang, M.; Shen, C. (2013). "Quantum image encryption and decryption algorithms based on quantum image geometric transformations. International". Journal of Theoretical Physics. 52 (6): 1802–1817. doi:10.1007/s10773-012-1274-8. S2CID   121269114.
  33. Jiang, N.; Zhao, N.; Wang, L. (2015). "Lsb based quantum image steganography algorithm". International Journal of Theoretical Physics. 55 (1): 107–123. doi: 10.1007/s10773-015-2640-0 . S2CID   120009979.
  34. Yao, Xi-Wei; Wang, Hengyan; Liao, Zeyang; Chen, Ming-Cheng; Pan, Jian; et al. (11 September 2017). "Quantum Image Processing and Its Application to Edge Detection: Theory and Experiment". Physical Review X . 7 (3): 31041. arXiv: 1801.01465 . Bibcode:2017PhRvX...7c1041Y. doi:10.1103/physrevx.7.031041. ISSN   2160-3308. LCCN   2011201149. OCLC   706478714. S2CID   119205332.