Quantum robotics

Last updated

Quantum robotics is an interdisciplinary field that investigates the intersection of robotics and quantum mechanics. This field, in particular, explores the applications of quantum phenomena such as quantum entanglement within the realm of robotics. Examples of its applications include quantum communication in multi-agent cooperative robotic scenarios, the use of quantum algorithms in performing robotics tasks, and the integration of quantum devices (e.g., quantum detectors) in robotic systems. [1] [2] [3] [4] [5] [6] [7]

Alice and Bob Robots

In the realm of quantum mechanics, the names Alice and Bob are frequently employed to illustrate various phenomena, protocols, and applications. These include their roles in quantum cryptography, quantum key distribution, quantum entanglement, and quantum teleportation. The terms "Alice Robot" and "Bob Robot" [1] [2] [3] [4] [5] [7] serve as analogous expressions that merge the concepts of Alice and Bob from quantum mechanics with mechatronic mobile platforms (such as robots, drones, and autonomous vehicles). For example, the Alice Robot functions as a transmitter platform that communicates with the Bob Robot, housing the receiving detectors.

Related Research Articles

In physics, the no-cloning theorem states that it is impossible to create an independent and identical copy of an arbitrary unknown quantum state, a statement which has profound implications in the field of quantum computing among others. The theorem is an evolution of the 1970 no-go theorem authored by James Park, in which he demonstrates that a non-disturbing measurement scheme which is both simple and perfect cannot exist. The aforementioned theorems do not preclude the state of one system becoming entangled with the state of another as cloning specifically refers to the creation of a separable state with identical factors. For example, one might use the controlled NOT gate and the Walsh–Hadamard gate to entangle two qubits without violating the no-cloning theorem as no well-defined state may be defined in terms of a subsystem of an entangled state. The no-cloning theorem concerns only pure states whereas the generalized statement regarding mixed states is known as the no-broadcast theorem.

Quantum physics is a branch of modern physics in which energy and matter are described at their most fundamental level, that of energy quanta, elementary particles, and quantum fields. Quantum physics encompasses any discipline concerned with systems that exhibit notable quantum-mechanical effects, where waves have properties of particles, and particles behave like waves. Applications of quantum mechanics include explaining phenomena found in nature as well as developing technologies that rely upon quantum effects, like integrated circuits and lasers.

<span class="mw-page-title-main">Quantum information</span> Information held in the state of a quantum system

Quantum information is the information of the state of a quantum system. It is the basic entity of study in quantum information theory, and can be manipulated using quantum information processing techniques. Quantum information refers to both the technical definition in terms of Von Neumann entropy and the general computational term.

<span class="mw-page-title-main">Quantum teleportation</span> Physical phenomenon

Quantum teleportation is a technique for transferring quantum information from a sender at one location to a receiver some distance away. While teleportation is commonly portrayed in science fiction as a means to transfer physical objects from one location to the next, quantum teleportation only transfers quantum information. The sender does not have to know the particular quantum state being transferred. Moreover, the location of the recipient can be unknown, but to complete the quantum teleportation, classical information needs to be sent from sender to receiver. Because classical information needs to be sent, quantum teleportation cannot occur faster than the speed of light.

<span class="mw-page-title-main">Qubit</span> Basic unit of quantum information

In quantum computing, a qubit or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state quantum-mechanical system, one of the simplest quantum systems displaying the peculiarity of quantum mechanics. Examples include the spin of the electron in which the two levels can be taken as spin up and spin down; or the polarization of a single photon in which the two spin states can also be measured as horizontal and vertical linear polarization. In a classical system, a bit would have to be in one state or the other. However, quantum mechanics allows the qubit to be in a coherent superposition of both states simultaneously, a property that is fundamental to quantum mechanics and quantum computing.

<span class="mw-page-title-main">Quantum entanglement</span> Correlation between quantum systems

Quantum entanglement is the phenomenon that occurs when a group of particles are generated, interact, or share spatial proximity in such a way that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.

Quantum key distribution (QKD) is a secure communication method that implements a cryptographic protocol involving components of quantum mechanics. It enables two parties to produce a shared random secret key known only to them, which then can be used to encrypt and decrypt messages. The process of quantum key distribution is not to be confused with quantum cryptography, as it is the best-known example of a quantum-cryptographic task.

<span class="mw-page-title-main">Alice and Bob</span> Characters used in cryptography and science literature

Alice and Bob are fictional characters commonly used as placeholders in discussions about cryptographic systems and protocols, and in other science and engineering literature where there are several participants in a thought experiment. The Alice and Bob characters were invented by Ron Rivest, Adi Shamir, and Leonard Adleman in their 1978 paper "A Method for Obtaining Digital Signatures and Public-key Cryptosystems". Subsequently, they have become common archetypes in many scientific and engineering fields, such as quantum cryptography, game theory and physics. As the use of Alice and Bob became more widespread, additional characters were added, sometimes each with a particular meaning. These characters do not have to refer to people; they refer to generic agents which might be different computers or even different programs running on a single computer.

<span class="mw-page-title-main">Anton Zeilinger</span> Austrian quantum physicist

Anton Zeilinger is an Austrian quantum physicist and Nobel laureate in physics of 2022. Zeilinger is professor of physics emeritus at the University of Vienna and senior scientist at the Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences. Most of his research concerns the fundamental aspects and applications of quantum entanglement.

In quantum information science, the Bell's states or EPR pairs are specific quantum states of two qubits that represent the simplest examples of quantum entanglement. The Bell's states are a form of entangled and normalized basis vectors. This normalization implies that the overall probability of the particle being in one of the mentioned states is 1: . Entanglement is a basis-independent result of superposition. Due to this superposition, measurement of the qubit will "collapse" it into one of its basis states with a given probability. Because of the entanglement, measurement of one qubit will "collapse" the other qubit to a state whose measurement will yield one of two possible values, where the value depends on which Bell's state the two qubits are in initially. Bell's states can be generalized to certain quantum states of multi-qubit systems, such as the GHZ state for 3 or more subsystems.

In physics, the no-communication theorem or no-signaling principle is a no-go theorem from quantum information theory which states that, during measurement of an entangled quantum state, it is not possible for one observer, by making a measurement of a subsystem of the total state, to communicate information to another observer. The theorem is important because, in quantum mechanics, quantum entanglement is an effect by which certain widely separated events can be correlated in ways that, at first glance, suggest the possibility of communication faster-than-light. The no-communication theorem gives conditions under which such transfer of information between two observers is impossible. These results can be applied to understand the so-called paradoxes in quantum mechanics, such as the EPR paradox, or violations of local realism obtained in tests of Bell's theorem. In these experiments, the no-communication theorem shows that failure of local realism does not lead to what could be referred to as "spooky communication at a distance".

Quantum networks form an important element of quantum computing and quantum communication systems. Quantum networks facilitate the transmission of information in the form of quantum bits, also called qubits, between physically separated quantum processors. A quantum processor is a machine able to perform quantum circuits on a certain number of qubits. Quantum networks work in a similar way to classical networks. The main difference is that quantum networking, like quantum computing, is better at solving certain problems, such as modeling quantum systems.

<span class="mw-page-title-main">Superdense coding</span> Two-bit quantum communication protocol

In quantum information theory, superdense coding is a quantum communication protocol to communicate a number of classical bits of information by only transmitting a smaller number of qubits, under the assumption of sender and receiver pre-sharing an entangled resource. In its simplest form, the protocol involves two parties, often referred to as Alice and Bob in this context, which share a pair of maximally entangled qubits, and allows Alice to transmit two bits to Bob by sending only one qubit. This protocol was first proposed by Charles H. Bennett and Stephen Wiesner in 1970 and experimentally actualized in 1996 by Klaus Mattle, Harald Weinfurter, Paul G. Kwiat and Anton Zeilinger using entangled photon pairs. Superdense coding can be thought of as the opposite of quantum teleportation, in which one transfers one qubit from Alice to Bob by communicating two classical bits, as long as Alice and Bob have a pre-shared Bell pair.

SARG04 is a 2004 quantum cryptography protocol derived from the first protocol of that kind, BB84.

Entanglement distillation is the transformation of N copies of an arbitrary entangled state into some number of approximately pure Bell pairs, using only local operations and classical communication.

Dipankar Home is an Indian theoretical physicist at Bose Institute, Kolkata. He works on the fundamental aspects of quantum mechanics, including quantum entanglement and Quantum communication. He is co-author with Partha Ghose of the popular book Riddles in your Teacup - Fun with Everyday Scientific Puzzles.

<span class="mw-page-title-main">Self-powered dynamic systems</span>

A self-powered dynamic system is defined as a dynamic system powered by its own excessive kinetic energy, renewable energy or a combination of both. The particular area of work is the concept of fully or partially self-powered dynamic systems requiring zero or reduced external energy inputs. The exploited technologies are particularly associated with self-powered sensors, regenerative actuators, human powered devices, and dynamic systems powered by renewable resources as self-sustained systems. Various strategies can be employed to improve the design of a self-powered system and among them adopting a bio-inspired design is investigated to demonstrate the advantage of biomimetics in improving power density.

Professor Margaret Daphne Reid from Swinburne University of Technology is a Fellow of the Australian Academy of Science. She is known for her pioneering work in new fundamental tests of quantum theory, including teleportation and cryptography.

The John Stewart Bell Prize for Research on Fundamental Issues in Quantum Mechanics and their Applications was established in 2009, funded and managed by the University of Toronto, Centre for Quantum Information & Quantum Control (CQIQC). Named after John Stewart Bell, it is awarded every odd-numbered year, for significant contributions relating to the foundations of quantum mechanics and to the applications of these principles – this covers, but is not limited to, quantum information theory, quantum computation, quantum foundations, quantum cryptography and quantum control. The selection committee has included Gilles Brassard, Peter Zoller, Alain Aspect, John Preskill, and Juan Ignacio Cirac Sasturain, in addition to previous winners Sandu Popescu, Michel Devoret and Nicolas Gisin.

<span class="mw-page-title-main">Nicolas Gisin</span> Swiss physicist

Nicolas Gisin is a Swiss physicist and professor at the University of Geneva, working on the foundations of quantum mechanics, quantum information, and communication. His work includes both experimental and theoretical physics. He has contributed work in the fields of experimental quantum cryptography and long-distance quantum communication over standard telecom optical fibers. He also co-founded ID Quantique, a company that provides quantum-based technologies.

References

  1. 1 2 Farbod Khoshnoud, Lucas Lamata, Clarence W. De Silva, Marco B. Quadrelli, Quantum Teleportation for Control of Dynamic Systems and Autonomy, Journal of Mechatronic Systems and Control, Volume 49, Issue 3, pp. 124-131, 2021.
  2. 1 2 Lamata, Lucas; Quadrelli, Marco B.; de Silva, Clarence W.; Kumar, Prem; Kanter, Gregory S.; Ghazinejad, Maziar; Khoshnoud, Farbod (12 October 2021). "Quantum Mechatronics". Electronics. 10 (20): 2483. doi: 10.3390/electronics10202483 .
  3. 1 2 Farbod Khoshnoud, Maziar Ghazinejad, Automated quantum entanglement and cryptography for networks of robotic systems, IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), IDETC-CIE 2021, Virtual Conference: August 17 – 20, DETC2021-71653, 2021.
  4. 1 2 Lamata, Lucas; Aiello, Clarice D.; Quadrelli, Bruno Marco; Ghazinejad, Maziar; de Silva, Clarence W.; Khoshnoud, Farbod; Bahr, Behnam (23 April 2021). "Modernizing Mechatronics course with Quantum Engineering, The American Society for Engineering Education" . Retrieved 7 September 2023.{{cite journal}}: Cite journal requires |journal= (help)
  5. 1 2 Khoshnoud, Farbod; Esat, Ibrahim I.; de Silva, Clarence W.; Quadrelli, Marco B. (April 2019). "Quantum Network of Cooperative Unmanned Autonomous Systems". Unmanned Systems. 07 (2): 137–145. doi:10.1142/S2301385019500055. ISSN   2301-3850. S2CID   149842737 . Retrieved 7 September 2023.
  6. Tandon, Prateek; Lam, Stanley; Shih, Ben; Mehta, Tanay; Mitev, Alex; Ong, Zhiyang (2017). "Introduction". Quantum Robotics: A Primer on Current Science and Future Perspectives. Synthesis Lectures on Quantum Computing. Springer International Publishing. pp. 1–3. doi:10.1007/978-3-031-02520-4_1. ISBN   978-3-031-02520-4 . Retrieved 7 September 2023.
  7. 1 2 Farbod Khoshnoud, Marco B. Quadrelli, Enrique Galvez, Clarence W. de Silva, Shayan Javaherian, B. Bahr, M. Ghazinejad, A. S. Eddin, M. El-Hadedy, Quantum Brain-Computer Interface, ASEE PSW, 2023, in press.