Quotient space (topology)

Last updated
Illustration of the construction of a topological sphere as the quotient space of a disk, by gluing together to a single point the points (in blue) of the boundary of the disk. Disk to Sphere using Quotient Space.gif
Illustration of the construction of a topological sphere as the quotient space of a disk, by gluing together to a single point the points (in blue) of the boundary of the disk.

In topology and related areas of mathematics, the quotient space of a topological space under a given equivalence relation is a new topological space constructed by endowing the quotient set of the original topological space with the quotient topology, that is, with the finest topology that makes continuous the canonical projection map (the function that maps points to their equivalence classes). In other words, a subset of a quotient space is open if and only if its preimage under the canonical projection map is open in the original topological space.

Contents

Intuitively speaking, the points of each equivalence class are identified or "glued together" for forming a new topological space. For example, identifying the points of a sphere that belong to the same diameter produces the projective plane as a quotient space.

Definition

Let be a topological space, and let be an equivalence relation on The quotient set is the set of equivalence classes of elements of The equivalence class of is denoted

The construction of defines a canonical surjection As discussed below, is a quotient mapping, commonly called the canonical quotient map, or canonical projection map, associated to

The quotient space under is the set equipped with the quotient topology, whose open sets are those subsets whose preimage is open. In other words, is open in the quotient topology on if and only if is open in Similarly, a subset is closed if and only if is closed in

The quotient topology is the final topology on the quotient set, with respect to the map

Quotient map

A map is a quotient map (sometimes called an identification map [1] ) if it is surjective and is equipped with the final topology induced by The latter condition admits two more-elementary formulations: a subset is open (closed) if and only if is open (resp. closed). Every quotient map is continuous but not every continuous map is a quotient map.

Saturated sets

A subset of is called saturated (with respect to ) if it is of the form for some set which is true if and only if The assignment establishes a one-to-one correspondence (whose inverse is ) between subsets of and saturated subsets of With this terminology, a surjection is a quotient map if and only if for every saturated subset of is open in if and only if is open in In particular, open subsets of that are not saturated have no impact on whether the function is a quotient map (or, indeed, continuous: a function is continuous if and only if, for every saturated such that is open in , the set is open in ).

Indeed, if is a topology on and is any map, then the set of all that are saturated subsets of forms a topology on If is also a topological space then is a quotient map (respectively, continuous) if and only if the same is true of

Quotient space of fibers characterization

Given an equivalence relation on denote the equivalence class of a point by and let denote the set of equivalence classes. The map that sends points to their equivalence classes (that is, it is defined by for every ) is called the canonical map. It is a surjective map and for all if and only if consequently, for all In particular, this shows that the set of equivalence class is exactly the set of fibers of the canonical map If is a topological space then giving the quotient topology induced by will make it into a quotient space and make into a quotient map. Up to a homeomorphism, this construction is representative of all quotient spaces; the precise meaning of this is now explained.

Let be a surjection between topological spaces (not yet assumed to be continuous or a quotient map) and declare for all that if and only if Then is an equivalence relation on such that for every which implies that (defined by ) is a singleton set; denote the unique element in by (so by definition, ). The assignment defines a bijection between the fibers of and points in

Define the map as above (by ) and give the quotient topology induced by (which makes a quotient map). These maps are related by:

From this and the fact that is a quotient map, it follows that is continuous if and only if this is true of Furthermore, is a quotient map if and only if is a homeomorphism (or equivalently, if and only if both and its inverse are continuous).

A hereditarily quotient map is a surjective map with the property that for every subset the restriction is also a quotient map. There exist quotient maps that are not hereditarily quotient.

Examples

For example,
[
0
,
1
]
/
{
0
,
1
}
{\displaystyle [0,1]/\{0,1\}}
is homeomorphic to the circle
S
1
.
{\displaystyle S^{1}.} Collapsing a subspace.svg
For example, is homeomorphic to the circle

Properties

Quotient maps are characterized among surjective maps by the following property: if is any topological space and is any function, then is continuous if and only if is continuous.

Characteristic property of the quotient topology QuotientSpace-01.svg
Characteristic property of the quotient topology

The quotient space together with the quotient map is characterized by the following universal property: if is a continuous map such that implies for all then there exists a unique continuous map such that In other words, the following diagram commutes:

Universal Property of Quotient Spaces.svg

One says that descends to the quotient for expressing this, that is that it factorizes through the quotient space. The continuous maps defined on are, therefore, precisely those maps which arise from continuous maps defined on that respect the equivalence relation (in the sense that they send equivalent elements to the same image). This criterion is copiously used when studying quotient spaces.

Given a continuous surjection it is useful to have criteria by which one can determine if is a quotient map. Two sufficient criteria are that be open or closed. Note that these conditions are only sufficient, not necessary. It is easy to construct examples of quotient maps that are neither open nor closed. For topological groups, the quotient map is open.

Compatibility with other topological notions

Separation

Connectedness

Compactness

Dimension

See also

Topology

Algebra

Notes

  1. Brown 2006, p. 103.

      Related Research Articles

      In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

      <span class="mw-page-title-main">Connected space</span> Topological space that is connected

      In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces.

      In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent have isomorphic fundamental groups. The fundamental group of a topological space is denoted by .

      <span class="mw-page-title-main">Metric space</span> Mathematical space with a notion of distance

      In mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry.

      In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

      In topology, the closure of a subset S of points in a topological space consists of all points in S together with all limit points of S. The closure of S may equivalently be defined as the union of S and its boundary, and also as the intersection of all closed sets containing S. Intuitively, the closure can be thought of as all the points that are either in S or "very near" S. A point which is in the closure of S is a point of closure of S. The notion of closure is in many ways dual to the notion of interior.

      <span class="mw-page-title-main">Topological group</span> Group that is a topological space with continuous group action

      In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.

      In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

      In the mathematical field of topology, the Alexandroff extension is a way to extend a noncompact topological space by adjoining a single point in such a way that the resulting space is compact. It is named after the Russian mathematician Pavel Alexandroff. More precisely, let X be a topological space. Then the Alexandroff extension of X is a certain compact space X* together with an open embedding c : X → X* such that the complement of X in X* consists of a single point, typically denoted ∞. The map c is a Hausdorff compactification if and only if X is a locally compact, noncompact Hausdorff space. For such spaces the Alexandroff extension is called the one-point compactification or Alexandroff compactification. The advantages of the Alexandroff compactification lie in its simple, often geometrically meaningful structure and the fact that it is in a precise sense minimal among all compactifications; the disadvantage lies in the fact that it only gives a Hausdorff compactification on the class of locally compact, noncompact Hausdorff spaces, unlike the Stone–Čech compactification which exists for any topological space.

      In mathematics, a diffeology on a set generalizes the concept of smooth charts in a differentiable manifold, declaring what the "smooth parametrizations" in the set are.

      <span class="mw-page-title-main">Homotopy</span> Continuous deformation between two continuous functions

      In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic if one can be "continuously deformed" into the other, such a deformation being called a homotopy between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology.

      In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.

      In mathematics, more specifically topology, a local homeomorphism is a function between topological spaces that, intuitively, preserves local structure. If is a local homeomorphism, is said to be an étale space over Local homeomorphisms are used in the study of sheaves. Typical examples of local homeomorphisms are covering maps.

      A CW complex is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead to meet the needs of homotopy theory. This class of spaces is broader and has some better categorical properties than simplicial complexes, but still retains a combinatorial nature that allows for computation. The C stands for "closure-finite", and the W for "weak" topology.

      In topology and related areas of mathematics, a subspace of a topological space X is a subset S of X which is equipped with a topology induced from that of X called the subspace topology.

      <span class="mw-page-title-main">Path (topology)</span> Continuous function whose domain is a closed unit interval

      In mathematics, a path in a topological space is a continuous function from a closed interval into

      In mathematics, specifically algebraic topology, the mapping cylinder of a continuous function between topological spaces and is the quotient

      In general topology and related areas of mathematics, the final topology on a set with respect to a family of functions from topological spaces into is the finest topology on that makes all those functions continuous.

      <span class="mw-page-title-main">Locally connected space</span> Property of topological spaces

      In topology and other branches of mathematics, a topological space X is locally connected if every point admits a neighbourhood basis consisting of open connected sets.

      In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by Cauchy nets or Cauchy filters, which are generalizations of Cauchy sequences, while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for all TVSs, including those that are not metrizable or Hausdorff.

      References