R5000

Last updated

NEC VR5000 KL NEC VR5000.jpg
NEC VR5000

The R5000 is a 64-bit, bi-endian, superscalar, in-order execution 2-issue design microprocessor that implements the MIPS IV instruction set architecture (ISA) developed by Quantum Effect Design (QED) in 1996. The project was funded by MIPS Technologies, Inc (MTI), also the licensor. MTI then licensed the design to Integrated Device Technology (IDT), NEC, NKK, and Toshiba. The R5000 succeeded the QED R4600 and R4700 as their flagship high-end embedded microprocessor. IDT marketed its version of the R5000 as the 79RV5000, NEC as VR5000, NKK as the NR5000, and Toshiba as the TX5000. The R5000 was sold to PMC-Sierra when the company acquired QED. Derivatives of the R5000 are still in production today[ when? ] for embedded systems.

Contents

Users

Users of the R5000 in workstation and server computers were Silicon Graphics, Inc. (SGI) and Siemens-Nixdorf. SGI used the R5000 in their O2 and Indy low-end workstations. The R5000 was also used in embedded systems such as network routers and high-end printers. The R5000 found its way into the arcade gaming industry, R5000 powered mainboards were used by Atari [1] and Midway. [2] Initially the Cobalt Qube and Cobalt RaQ used a derivative model, the RM5230 and RM5231. The Qube 2700 used the RM5230 microprocessor, whereas the Qube 2 used the RM5231. The original RaQ systems were equipped with RM5230 or RM5231 CPUs but later models used AMD K6-2 chips and then eventually Intel Pentium III CPUs for the final models.

History

The original roadmap called for 200 MHz operation in early 1996, 250 MHz in late 1996, succeeded in 1997 by R5000A. The R5000 was introduced in January 1996 and failed to achieve 200 MHz, topping out at 180 MHz. When positioned as a low-end workstation microprocessor, the competition included the IBM and Motorola PowerPC 604, the HP PA-7300LC and the Intel Pentium Pro.

Description

NEC VR5000 die shot. NEC VR5000 die.JPG
NEC VR5000 die shot.

The R5000 is a two-way superscalar design that executes instructions in-order. The R5000 could simultaneously issue an integer and a floating-point instruction. It had one simple pipeline for integer instructions and another for floating-point to save transistors and die area to reduce cost. The R5000 did not perform dynamic branch prediction for cost reasons. Instead it uses a static approach, utilizing the hints encoded by the compiler in the branch-likely instructions first introduced in the MIPS II architecture to determine how likely a branch is taken.

The R5000 had large L1 caches, a distinct characteristic of QED, whose designers favored simple designs with large caches. The R5000 had two L1 caches, one for instructions and the other for data. Both have a capacity of 32 KB. The caches are two-way set-associative, have a 32-byte line size, and are virtually indexed, physically tagged. Instructions were predecoded as they enter the instruction cache by appending four bits to each instruction. These four bits specify whether can be issued together and which execution unit they are executed by. This assisted superscalar instruction issue by moving some of the dependency and conflict checking out of the critical path.

The integer unit executes most instructions with a one cycle latency and throughput except for multiply and divide. 32-bit multiplies have a five-cycle latency and a four-cycle throughput. 64-bit multiplies have an extra four cycles of latency and half the throughput. Divides have a 36-cycle latency and throughput for 32-bit integers, and for 64-bit integers, they are increased to 68 cycles.

The floating-point unit (FPU) was a fast single-precision (32-bit) design, for reduced cost and to benefit SGI, whose mid-range 3D graphics workstations relied mostly on single-precision math for 3D graphics applications. It was fully pipelined, which made it significantly better than that of the R4700. The R5000 implements the multiply-add instruction of the MIPS IV ISA. Single-precision adds, multiplies and multiply-adds have a four-cycle latency and a one cycle throughput. Single-precision divides have a 21-cycle latency and a 19-cycle throughput, while square roots have a 26-cycle latency and a 38-cycle throughput. Division and square-root was not pipelined. Instructions that operate on double precision numbers have a significantly higher latency and lower throughput except for add, which has identical latency and throughput with single-precision add. Multiply and multiply-add have a five-cycle latency and a two-cycle throughput. Divide has a 36-cycle latency and a 34-cycle throughput. Square root has a 68-cycle latency and a 66-cycle throughput.

The R5000 had an integrated L2 cache controller that supported capacities of 512 KB, 1 MB and 2 MB. The L2 cache shares the SysAD bus with the external interface. The cache was built with custom synchronous SRAMs (SSRAMs). The microprocessor uses the SysAD bus that is also used by several other MIPS microprocessors. The bus is multiplexed (address and data share the same set of wires) and can operate at clock frequencies up to 100 MHz. The initial R5000 did not support multiprocessing, but the package reserved eight pins for the future addition of this feature.

QED was a fabless company and did not fabricate their own designs. The R5000 was fabricated by IDT, NEC and NKK. All three companies fabricated the R5000 in a 0.35 μm complementary metaloxidesemiconductor (CMOS) process, but with different process features. IDT fabricated the R5000 in a process with two levels of polysilicon and three levels of aluminium interconnect. The two levels of polysilicon enabled IDT to use a four-transistor SRAM cell, resulting in a transistor count of 3.6 million and a die that measured 8.7 mm by 9.7 mm (84.39 mm2). NEC and NKK fabricated the R5000 in a process with one level of polysilicon and three levels of aluminium interconnect. Without an extra level of polysilicon, both companies had to use a six-transistor SRAM cell, resulting in a transistor count of 5.0 million and a larger die with an area of around 87 mm2. Die sizes in the range of 80 to 90 mm2 were claimed by MTI. 0.8 million of the transistors in both versions were for logic, and the remainder contained in the caches. It was packaged in a 272-ball plastic ball grid array (BGA) or 223-pin ceramic pin grid array (PGA). It was not pin-compatible with any previous MIPS microprocessor.

Derivatives

In the late 1990s, Quantum Effect Design acquired a license to manufacture and sell MIPS microprocessors from MTI and became a microprocessor vendor, changing its name to Quantum Effect Devices to reflect its new business model. The company's first products were members of the RM52xx family, which initially consisted of two models, the RM5230 and RM5260. These were announced on 24 March 1997. The RM5230 was initially available at 100 and 133 MHz, and the RM5260 at 133 and 150 MHz. On 29 September 1997, new 150 and 175 MHz RM5230s were introduced, as were 175 and 200 MHz RM5260s.

Both the RM5230 and RM5260 are derivatives of the R5000 and differ in the size of their primary caches (16 KB each instead of 32 KB), the width of their system interfaces (the RM5230 has a 32-bit 67 MHz SysAD bus, and the RM5260 a 64-bit 75 MHz SysAD bus), and the addition of multiply-add and three-operand multiply instructions for digital signal processing applications. These microprocessors were fabricated by the Taiwan Semiconductor Manufacturing Company (TSMC) in its 0.35 μm process with three levels of interconnect. They were packaged by Amkor Technology in its Power-Quad 4 packages, the RM5230 in a 128-pin version, and the RM5260 in a 208-pin version.

The RM52xx family was later joined by the RM5270, which was announced at the Embedded Systems Conference on 29 September 1997. Intended for high-end embedded applications, the RM5270 was available at 150 and 200 MHz. Improvements were the addition of an on-chip secondary cache controller that supported up to 2 MB of cache. The SysAD bus is 64 bits wide and can operate at 100 MHz. It was packaged in a 304-pin Super-BGA (SBGA) that was pin-compatible with the RM7000 and was offered as a migration path to the RM7000.

QED RM52x1 die shot. QED RM52X1 die.JPG
QED RM52x1 die shot.

On 20 July 1998, the RM52x1 family was announced. The family consisted of the RM5231, RM5261, and RM5271. These microprocessors were derivatives of the corresponding devices from the RM52x0 family fabricated in a 0.25 μm process with four levels of metal. The RM5231 was initially available at 150, 200, and 250 MHz; whereas the RM5261 and RM5271 were available at 250 and 266 MHz. On 6 July 1999, a 300 MHz RM5271 was introduced, priced at US$140 in quantities of 10,000. The RM52x1 improved upon the previous family with larger 32 KB primary caches and a faster SysAD bus that supported clock rates up to 125 MHz.

After QED was acquired by PMC-Sierra, the RM52xx and RM52x1 families were continued as PMC-Sierra products. PMC-Sierra introduced two RM52x1 derivatives, the RM5231A and RM5261A, on 4 April 2001. These microprocessors were fabricated by TSMC in its 0.18 μm process and differ from the previous devices by featuring higher clock rates and lower power consumption. The RM5231A was available at clock rates of 250 to 350 MHz, and the RM5261A from 250 to 400 MHz.

R5900 used in Sony's PlayStation 2 is a modified version of R5000 CPU dubbed the Emotion Engine with a customized instruction/data cache arrangement and Sony's proprietary 107 vector SIMD Multimedia Extensions(MMI). Its custom FPU is not IEEE 754 compliant unlike FPUs used by R5000. It also has a second MIPS core which acted as a sync controller for specialized vector coprocessors, important for 3D math which at the time was principally computed on the CPU.

Related Research Articles

<span class="mw-page-title-main">Pentium (original)</span> Intel microprocessor

The Pentium is a x86 microprocessor introduced by Intel on March 22, 1993. It is the first CPU using the Pentium brand. Considered the fifth generation in the 8086 compatible line of processors, its implementation and microarchitecture was internally called P5.

Quantum Effect Devices, Inc. (QED), was a microprocessor design company incorporated in 1991 as Quantum Effect Design. It was based in Palo Alto, California.

<span class="mw-page-title-main">Emotion Engine</span> Central processing unit by Sony Computer Entertainment and Toshiba

The Emotion Engine is a central processing unit developed and manufactured by Sony Computer Entertainment and Toshiba for use in the PlayStation 2 video game console. It was also used in early PlayStation 3 models sold in Japan and North America to provide PlayStation 2 game support. Mass production of the Emotion Engine began in 1999 and ended in late 2012 with the discontinuation of the PlayStation 2.

SPARC64 is a microprocessor developed by HAL Computer Systems and fabricated by Fujitsu. It implements the SPARC V9 instruction set architecture (ISA), the first microprocessor to do so. SPARC64 was HAL's first microprocessor and was the first in the SPARC64 brand. It operates at 101 and 118 MHz. The SPARC64 was used exclusively by Fujitsu in their systems; the first systems, the Fujitsu HALstation Model 330 and Model 350 workstations, were formally announced in September 1995 and were introduced in October 1995, two years late. It was succeeded by the SPARC64 II in 1996.

<span class="mw-page-title-main">AMD Am29000</span> Family of RISC microprocessors and microcontrollers

The AMD Am29000, commonly shortened to 29k, is a family of 32-bit RISC microprocessors and microcontrollers developed and fabricated by Advanced Micro Devices (AMD). Based on the seminal Berkeley RISC, the 29k added a number of significant improvements. They were, for a time, the most popular RISC chips on the market, widely used in laser printers from a variety of manufacturers.

<span class="mw-page-title-main">POWER3</span> 1998 family of microprocessors by IBM

The POWER3 is a microprocessor, designed and exclusively manufactured by IBM, that implemented the 64-bit version of the PowerPC instruction set architecture (ISA), including all of the optional instructions of the ISA such as instructions present in the POWER2 version of the POWER ISA but not in the PowerPC ISA. It was introduced on 5 October 1998, debuting in the RS/6000 43P Model 260, a high-end graphics workstation. The POWER3 was originally supposed to be called the PowerPC 630 but was renamed, probably to differentiate the server-oriented POWER processors it replaced from the more consumer-oriented 32-bit PowerPCs. The POWER3 was the successor of the P2SC derivative of the POWER2 and completed IBM's long-delayed transition from POWER to PowerPC, which was originally scheduled to conclude in 1995. The POWER3 was used in IBM RS/6000 servers and workstations at 200 MHz. It competed with the Digital Equipment Corporation (DEC) Alpha 21264 and the Hewlett-Packard (HP) PA-8500.

<span class="mw-page-title-main">R10000</span> MIPS microprocessor

The R10000, code-named "T5", is a RISC microprocessor implementation of the MIPS IV instruction set architecture (ISA) developed by MIPS Technologies, Inc. (MTI), then a division of Silicon Graphics, Inc. (SGI). The chief designers are Chris Rowen and Kenneth C. Yeager. The R10000 microarchitecture is known as ANDES, an abbreviation for Architecture with Non-sequential Dynamic Execution Scheduling. The R10000 largely replaces the R8000 in the high-end and the R4400 elsewhere. MTI was a fabless semiconductor company; the R10000 was fabricated by NEC and Toshiba. Previous fabricators of MIPS microprocessors such as Integrated Device Technology (IDT) and three others did not fabricate the R10000 as it was more expensive to do so than the R4000 and R4400.

<span class="mw-page-title-main">R3000</span> RISC microprocessor

The R3000 is a 32-bit RISC microprocessor chipset developed by MIPS Computer Systems that implemented the MIPS I instruction set architecture (ISA). Introduced in June 1988, it was the second MIPS implementation, succeeding the R2000 as the flagship MIPS microprocessor. It operated at 20, 25 and 33.33 MHz.

<span class="mw-page-title-main">R4000</span> MIPS microprocessor

The R4000 is a microprocessor developed by MIPS Computer Systems that implements the MIPS III instruction set architecture (ISA). Officially announced on 1 October 1991, it was one of the first 64-bit microprocessors and the first MIPS III implementation. In the early 1990s, when RISC microprocessors were expected to replace CISC microprocessors such as the Intel i486, the R4000 was selected to be the microprocessor of the Advanced Computing Environment (ACE), an industry standard that intended to define a common RISC platform. ACE ultimately failed for a number of reasons, but the R4000 found success in the workstation and server markets.

The R8000 is a microprocessor chipset developed by MIPS Technologies, Inc. (MTI), Toshiba, and Weitek. It was the first implementation of the MIPS IV instruction set architecture. The R8000 is also known as the TFP, for Tremendous Floating-Point, its name during development.

<span class="mw-page-title-main">Alpha 21064</span> Microprocessor

The Alpha 21064 is a microprocessor developed and fabricated by Digital Equipment Corporation that implemented the Alpha instruction set architecture (ISA). It was introduced as the DECchip 21064 before it was renamed in 1994. The 21064 is also known by its code name, EV4. It was announced in February 1992 with volume availability in September 1992. The 21064 was the first commercial implementation of the Alpha ISA, and the first microprocessor from Digital to be available commercially. It was succeeded by a derivative, the Alpha 21064A in October 1993. This last version was replaced by the Alpha 21164 in 1995.

<span class="mw-page-title-main">Alpha 21164</span> Microprocessor

The Alpha 21164, also known by its code name, EV5, is a microprocessor developed and fabricated by Digital Equipment Corporation that implemented the Alpha instruction set architecture (ISA). It was introduced in January 1995, succeeding the Alpha 21064A as Digital's flagship microprocessor. It was succeeded by the Alpha 21264 in 1998.

<span class="mw-page-title-main">Alpha 21264</span> RISC microprocessor

The Alpha 21264 is a Digital Equipment Corporation RISC microprocessor launched on 19 October 1998. The 21264 implemented the Alpha instruction set architecture (ISA).

<span class="mw-page-title-main">PA-8000</span> HP microprocessor

The PA-8000 (PCX-U), code-named Onyx, is a microprocessor developed and fabricated by Hewlett-Packard (HP) that implemented the PA-RISC 2.0 instruction set architecture (ISA). It was a completely new design with no circuitry derived from previous PA-RISC microprocessors. The PA-8000 was introduced on 2 November 1995 when shipments began to members of the Precision RISC Organization (PRO). It was used exclusively by PRO members and was not sold on the merchant market. All follow-on PA-8x00 processors are based on the basic PA-8000 processor core.

<span class="mw-page-title-main">UltraSPARC III</span> Microprocessor developed by Sun Microsystems

The UltraSPARC III, code-named "Cheetah", is a microprocessor that implements the SPARC V9 instruction set architecture (ISA) developed by Sun Microsystems and fabricated by Texas Instruments. It was introduced in 2001 and operates at 600 to 900 MHz. It was succeeded by the UltraSPARC IV in 2004. Gary Lauterbach was the chief architect.

The R2000 is a 32-bit microprocessor chip set developed by MIPS Computer Systems that implemented the MIPS I instruction set architecture (ISA). Introduced in January 1986, it was the first commercial implementation of the MIPS architecture and the first commercial RISC processor available to all companies. The R2000 competed with Digital Equipment Corporation (DEC) VAX minicomputers and with Motorola 68000 and Intel Corporation 80386 microprocessors. R2000 users included Ardent Computer, DEC, Silicon Graphics, Northern Telecom and MIPS's own Unix workstations.

The R4200 is a microprocessor designed by MIPS Technologies, Inc. (MTI) that implemented the MIPS III instruction set architecture (ISA). It was also known as the VRX during development. The microprocessor was licensed to NEC, and the company fabricated and marketed it as the VR4200. The first VR4200, an 80 MHz part, was introduced in 1993. A faster 100 MHz part became available in 1994.

<span class="mw-page-title-main">PA-7100LC</span> Microprocessor developed by Hewlett-Packard

The PA-7100LC is a microprocessor that implements the PA-RISC 1.1 instruction set architecture (ISA) developed by Hewlett-Packard (HP). It is also known as the PCX-L, and by its code-name, Hummingbird. It was designed as a low-cost microprocessor for low-end systems. The first systems to feature the PA-7100LC were introduced in January 1994. These systems used 60 and 80 MHz clock rates. A 100 MHz part debuted in June 1994. The PA-7100LC was the first PA-RISC microprocessor to implement the MAX-1 multimedia instructions, an early single instruction, multiple data (SIMD) multimedia instruction set extension that provided instructions for improving the performance of MPEG video decoding.

<span class="mw-page-title-main">R4600</span>

The R4600, code-named "Orion", is a microprocessor developed by Quantum Effect Design (QED) that implemented the MIPS III instruction set architecture (ISA). As QED was a design firm that did not fabricate or sell their designs, the R4600 was first licensed to Integrated Device Technology (IDT), and later to Toshiba and then NKK. These companies fabricated the microprocessor and marketed it. The R4600 was designed as a low-end workstation or high-end embedded microprocessor. Users included Silicon Graphics, Inc. (SGI) for their Indy workstation and DeskStation Technology for their Windows NT workstations. The R4600 was instrumental in making the Indy successful by providing good integer performance at a competitive price. In embedded systems, prominent users included Cisco Systems in their network routers and Canon in their printers.

Since 1985, many processors implementing some version of the MIPS architecture have been designed and used widely.

References

  1. "System 16 - Atari Seattle Hardware (Atari)". www.system16.com. Retrieved 30 November 2015.
  2. "System 16 - Midway Seattle Hardware (Midway)". www.system16.com. Retrieved 30 November 2015.