Radio Link Control

Last updated

Radio Link Control (RLC) is a layer 2 Radio Link Protocol used in UMTS, LTE and 5G on the Air interface. This protocol is specified by 3GPP in TS 25.322 [1] for UMTS, TS 36.322 [2] for LTE and TS 38.322 [3] for 5G New Radio (NR). RLC is located on top of the 3GPP MAC-layer and below the PDCP-layer. The main tasks of the RLC protocol are:

RLC features specific to LTE only - 1) Re-segmentation. 2) RLC SDU discard is notified by upper layer.

Related Research Articles

<span class="mw-page-title-main">Enhanced Data rates for GSM Evolution</span> Digital mobile phone technology

Enhanced Data rates for GSM Evolution (EDGE), also known as 2.75G, Enhanced GPRS (EGPRS), IMT Single Carrier (IMT-SC), and Enhanced Data rates for Global Evolution, is a digital mobile phone technology that allows improved data transmission rates as a backward-compatible extension of GSM. EDGE is considered a pre-3G radio technology and is part of ITU's 3G definition. EDGE was deployed on GSM networks beginning in 2003 – initially by Cingular in the United States.

<span class="mw-page-title-main">General Packet Radio Service</span> Packet oriented mobile data service on 2G and 3G

General Packet Radio Service (GPRS), also called 2.5G, is a packet oriented mobile data standard on the 2G cellular communication network's global system for mobile communications (GSM). GPRS was established by European Telecommunications Standards Institute (ETSI) in response to the earlier CDPD and i-mode packet-switched cellular technologies. It is now maintained by the 3rd Generation Partnership Project (3GPP).

The Universal Mobile Telecommunications System (UMTS) is a third generation mobile cellular system for networks based on the GSM standard. Developed and maintained by the 3GPP, UMTS is a component of the International Telecommunication Union IMT-2000 standard set and compares with the CDMA2000 standard set for networks based on the competing cdmaOne technology. UMTS uses wideband code-division multiple access (W-CDMA) radio access technology to offer greater spectral efficiency and bandwidth to mobile network operators.

<span class="mw-page-title-main">Protocol data unit</span> Unit of information transmitted over a computer network

In telecommunications, a protocol data unit (PDU) is a single unit of information transmitted among peer entities of a computer network. It is composed of protocol-specific control information and user data. In the layered architectures of communication protocol stacks, each layer implements protocols tailored to the specific type or mode of data exchange.

<span class="mw-page-title-main">Medium access control</span> Service layer in IEEE 802 network standards

In IEEE 802 LAN/MAN standards, the medium access control (MAC), also called media access control, is the layer that controls the hardware responsible for interaction with the wired or wireless transmission medium. The MAC sublayer and the logical link control (LLC) sublayer together make up the data link layer. The LLC provides flow control and multiplexing for the logical link, while the MAC provides flow control and multiplexing for the transmission medium.

The 3rd Generation Partnership Project (3GPP) is an umbrella term for a number of standards organizations which develop protocols for mobile telecommunications. Its best known work is the development and maintenance of:

Non-access stratum (NAS) is a functional layer in the NR, LTE, UMTS and GSM wireless telecom protocol stacks between the core network and user equipment. This layer is used to manage the establishment of communication sessions and for maintaining continuous communications with the user equipment as it moves. The NAS is defined in contrast to the Access Stratum which is responsible for carrying information over the wireless portion of the network. A further description of NAS is that it is a protocol for messages passed between the User Equipment, also known as mobiles, and Core Nodes that is passed transparently through the radio network. Examples of NAS messages include Update or Attach messages, Authentication Messages, Service Requests and so forth. Once the User Equipment (UE) establishes a radio connection, the UE uses the radio connection to communicate with the core nodes to coordinate service. The distinction is that the Access Stratum is for dialogue explicitly between the mobile equipment and the radio network and the NAS is for dialogue between the mobile equipment and core network nodes.

SNDCP, Sub Network Dependent Convergence Protocol, is part of layer 3 of a GPRS protocol specification. SNDCP interfaces to the Internet Protocol at the top, and to the GPRS-specific Logical Link Control (LLC) protocol at the bottom.

In telecommunications networks, RANAP is a protocol specified by 3GPP in TS 25.413 and used in UMTS for signaling between the Core Network, which can be a MSC or SGSN, and the UTRAN. RANAP is carried over Iu-interface.

GPRS Tunnelling Protocol (GTP) is a group of IP-based communications protocols used to carry general packet radio service (GPRS) within GSM, UMTS, LTE and 5G NR radio networks. In 3GPP architectures, GTP and Proxy Mobile IPv6 based interfaces are specified on various interface points.

Multimedia Broadcast Multicast Services (MBMS) is a point-to-multipoint interface specification for existing 3GPP cellular networks, which is designed to provide efficient delivery of broadcast and multicast services, both within a cell as well as within the core network. For broadcast transmission across multiple cells, it defines transmission via single-frequency network configurations. The specification is referred to as Evolved Multimedia Broadcast Multicast Services (eMBMS) when transmissions are delivered through an LTE network. eMBMS is also known as LTE Broadcast.

<span class="mw-page-title-main">E-UTRA</span> 3GPP interface

E-UTRA is the air interface of 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) upgrade path for mobile networks. It is an acronym for Evolved UMTS Terrestrial Radio Access, also known as the Evolved Universal Terrestrial Radio Access in early drafts of the 3GPP LTE specification. E-UTRAN is the combination of E-UTRA, user equipment (UE), and a Node B.

Packet Data Convergence Protocol (PDCP) is specified by 3GPP in TS 25.323 for UMTS, TS 36.323 for LTE and TS 38.323 for 5G. PDCP is located in the Radio Protocol Stack in the UMTS/LTE/5G air interface on top of the RLC layer.

<span class="mw-page-title-main">High Speed Packet Access</span> Communications protocols

High Speed Packet Access (HSPA) is an amalgamation of two mobile protocols—High Speed Downlink Packet Access (HSDPA) and High Speed Uplink Packet Access (HSUPA)—that extends and improves the performance of existing 3G mobile telecommunication networks using the WCDMA protocols. A further-improved 3GPP standard called Evolved High Speed Packet Access was released late in 2008, with subsequent worldwide adoption beginning in 2010. The newer standard allows bit rates to reach as high as 337 Mbit/s in the downlink and 34 Mbit/s in the uplink; however, these speeds are rarely achieved in practice.

The Radio Resource Control (RRC) protocol is used in UMTS, LTE and 5G on the Air interface. It is a layer 3 protocol used between UE and Base Station. This protocol is specified by 3GPP in TS 25.331 for UMTS, in TS 36.331 for LTE and in TS 38.331 for 5G New Radio. RRC messages are transported via the PDCP-Protocol.

System Architecture Evolution (SAE) is the core network architecture of mobile communications protocol group 3GPP's LTE wireless communication standard.

The Broadcast/Multicast control (BMC) is a sublayer of layer 2 protocol of Radio Interface Protocol Architecture as per BMC-STD. It exists in the user plane only. It is located above the Radio Link Control (RLC), a layer 2 responsible for mapping logical channels. It is similar to 802.11's LLC layer which supports multimode operations and it works in three different modes:

a) Transparent  b) Unacknowledged data transfer  c) Acknowledged data transfer. Its main function is to deliver "Cell Broadcast" messages to its upper layer such as NAS.

Frequency bands for 5G New Radio, which is the air interface or radio access technology of the 5G mobile networks, are separated into two different frequency ranges. First there is Frequency Range 1 (FR1), which includes sub-6 GHz frequency bands, some of which are traditionally used by previous standards, but has been extended to cover potential new spectrum offerings from 410 MHz to 7125 MHz. The other is Frequency Range 2 (FR2), which includes frequency bands from 24.25 GHz to 71.0 GHz. Frequency bands are also available for non-terrestrial networks (NTN) in the sub-6 GHz range.

5G NR is a radio access technology (RAT) developed by the 3rd Generation Partnership Project (3GPP) for the 5G mobile network. It was designed to be the global standard for the air interface of 5G networks. It is based on orthogonal frequency-division multiplexing (OFDM), as is the 4G long-term evolution (LTE) standard.

Backhaul Adaptation Protocol (BAP) is a layer 2 Routing protocol used in 5G for Integrated Access and Backhaul (IAB) .

References