Random close pack

Last updated

Random close packing (RCP) of spheres is an empirical parameter used to characterize the maximum volume fraction of solid objects obtained when they are packed randomly. For example, when a solid container is filled with grain, shaking the container will reduce the volume taken up by the objects, thus allowing more grain to be added to the container. In other words, shaking increases the density of packed objects. But shaking cannot increase the density indefinitely, a limit is reached, and if this is reached without obvious packing into an ordered structure, such as a regular crystal lattice, this is the empirical random close-packed density for this particular procedure of packing. The random close packing is the highest possible volume fraction out of all possible packing procedures.

Contents

Experiments and computer simulations have shown that the most compact way to pack hard perfect same-size spheres randomly gives a maximum volume fraction of about 64%, i.e., approximately 64% of the volume of a container is occupied by the spheres. The problem of predicting theoretically the random close pack of spheres is difficult mainly because of the absence of a unique definition of randomness or disorder. [1] The random close packing value is significantly below the maximum possible close-packing of same-size hard spheres into a regular crystalline arrangements, which is 74.04%. [2] Both the face-centred cubic (fcc) and hexagonal close packed (hcp) crystal lattices have maximum densities equal to this upper limit, which can occur through the process of granular crystallisation.

The random close packing fraction of discs in the plane has also been considered a theoretically unsolved problem because of similar difficulties. An analytical, though not in closed form, solution to this problem was found in 2021 by R. Blumenfeld. [3] The solution was found by limiting the probability of growth of ordered clusters to be exponentially small and relating it to the distribution of `cells', which are the smallest voids surrounded by connected discs. The derived maximum volume fraction is 85.3542%, if only hexagonal lattice clusters are disallowed, and 85.2514% if one disallows also deformed square lattice clusters.

An analytical and closed-form solution for both 2D and 3D, mechanically stable, random packings of spheres has been found by A. Zaccone in 2022 using the assumption that the most random branch of jammed states (maximally random jammed packings, extending up to the fcc closest packing) undergo crowding in a way qualitatively similar to an equilibrium liquid. [4] [5] The reasons for the effectiveness of this solution are the object of ongoing debate. [6]


Definition

Random close packing of spheres does not have yet a precise geometric definition. It is defined statistically, and results are empirical. A container is randomly filled with objects, and then the container is shaken or tapped until the objects do not compact any further, at this point the packing state is RCP. The definition of packing fraction can be given as: "the volume taken by number of particles in a given space of volume". In other words, packing fraction defines the packing density. It has been shown that the filling fraction increases with the number of taps until the saturation density is reached. [7] [8] Also, the saturation density increases as the tapping amplitude decreases. Thus, RCP is the packing fraction given by the limit as the tapping amplitude goes to zero, and the limit as the number of taps goes to infinity.

Effect of object shape

The particle volume fraction at RCP depends on the objects being packed. If the objects are polydispersed then the volume fraction depends non-trivially on the size-distribution and can be arbitrarily close to 1. Still for (relatively) monodisperse objects the value for RCP depends on the object shape; for spheres it is 0.64, for M&M's candy it is 0.68. [9]

For spheres

Comparison of various models of close sphere packing (monodispersed) [10]
ModelDescription Void fraction Packing density
Thinnest regular packing cubic lattice (Coordination number 6)0.47640.5236
Very loose random packingE.g., spheres slowly settled0.440.56
Loose random packingE.g., dropped into bed or packed by hand0.40 to 0.410.59 to 0.60
Poured random packingSpheres poured into bed0.375 to 0.3910.609 to 0.625
Close random packingE.g., the bed vibrated0.359 to 0.3750.625 to 0.641
Densest regular packing fcc or hcp lattice (Coordination number 12)0.25950.7405

Example

Products containing loosely packed items are often labeled with this message: 'Contents May Settle During Shipping'. Usually during shipping, the container will be bumped numerous times, which will increase the packing density. The message is added to assure the consumer that the container is full on a mass basis, even though the container appears slightly empty. Systems of packed particles are also used as a basic model of porous media.

See also

Related Research Articles

<span class="mw-page-title-main">Packing problems</span> Problems which attempt to find the most efficient way to pack objects into containers

Packing problems are a class of optimization problems in mathematics that involve attempting to pack objects together into containers. The goal is to either pack a single container as densely as possible or pack all objects using as few containers as possible. Many of these problems can be related to real-life packaging, storage and transportation issues. Each packing problem has a dual covering problem, which asks how many of the same objects are required to completely cover every region of the container, where objects are allowed to overlap.

<span class="mw-page-title-main">Sphere packing</span> An arrangement of non-overlapping spheres within a containing space

In geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space. The spheres considered are usually all of identical size, and the space is usually three-dimensional Euclidean space. However, sphere packing problems can be generalised to consider unequal spheres, spaces of other dimensions or to non-Euclidean spaces such as hyperbolic space.

<span class="mw-page-title-main">Phyllotaxis</span> Arrangement of leaves on the stem of a plant

In botany, phyllotaxis or phyllotaxy is the arrangement of leaves on a plant stem. Phyllotactic spirals form a distinctive class of patterns in nature.

<span class="mw-page-title-main">Granular material</span> Conglomeration of discrete solid, macroscopic particles

A granular material is a conglomeration of discrete solid, macroscopic particles characterized by a loss of energy whenever the particles interact. The constituents that compose granular material are large enough such that they are not subject to thermal motion fluctuations. Thus, the lower size limit for grains in granular material is about 1 μm. On the upper size limit, the physics of granular materials may be applied to ice floes where the individual grains are icebergs and to asteroid belts of the Solar System with individual grains being asteroids.

<span class="mw-page-title-main">Granular convection</span> Movement in granular material

Granular convection is a phenomenon where granular material subjected to shaking or vibration will exhibit circulation patterns similar to types of fluid convection. It is sometimes called the Brazil nut effect, when the largest of irregularly shaped particles end up on the surface of a granular material containing a mixture of variously sized objects. This name derives from the example of a typical container of mixed nuts, in which the largest will be Brazil nuts. The phenomenon is also known as the muesli effect since it is seen in packets of breakfast cereal containing particles of different sizes but similar density, such as muesli mix.

<span class="mw-page-title-main">Rhombic enneacontahedron</span> Convex polyhedron with 90 rhombic faces

In geometry, a rhombic enneacontahedron is a polyhedron composed of 90 rhombic faces; with three, five, or six rhombi meeting at each vertex. It has 60 broad rhombi and 30 slim. The rhombic enneacontahedron is a zonohedron with a superficial resemblance to the rhombic triacontahedron.

<span class="mw-page-title-main">Interstitial defect</span> Crystallographic defect; atoms located in the gaps between atoms in the lattice

In materials science, an interstitial defect is a type of point crystallographic defect where an atom of the same or of a different type, occupies an interstitial site in the crystal structure. When the atom is of the same type as those already present they are known as a self-interstitial defect. Alternatively, small atoms in some crystals may occupy interstitial sites, such as hydrogen in palladium. Interstitials can be produced by bombarding a crystal with elementary particles having energy above the displacement threshold for that crystal, but they may also exist in small concentrations in thermodynamic equilibrium. The presence of interstitial defects can modify the physical and chemical properties of a material.

The percolation threshold is a mathematical concept in percolation theory that describes the formation of long-range connectivity in random systems. Below the threshold a giant connected component does not exist; while above it, there exists a giant component of the order of system size. In engineering and coffee making, percolation represents the flow of fluids through porous media, but in the mathematics and physics worlds it generally refers to simplified lattice models of random systems or networks (graphs), and the nature of the connectivity in them. The percolation threshold is the critical value of the occupation probability p, or more generally a critical surface for a group of parameters p1, p2, ..., such that infinite connectivity (percolation) first occurs.

<span class="mw-page-title-main">Jamming (physics)</span>

Jamming is the physical process by which the viscosity of some mesoscopic materials, such as granular materials, glasses, foams, polymers, emulsions, and other complex fluids, increases with increasing particle density. The jamming transition has been proposed as a new type of phase transition, with similarities to a glass transition but very different from the formation of crystalline solids.

<span class="mw-page-title-main">Tetrahedron packing</span>

In geometry, tetrahedron packing is the problem of arranging identical regular tetrahedra throughout three-dimensional space so as to fill the maximum possible fraction of space.

<span class="mw-page-title-main">Colloidal crystal</span>

A colloidal crystal is an ordered array of colloid particles and fine grained materials analogous to a standard crystal whose repeating subunits are atoms or molecules. A natural example of this phenomenon can be found in the gem opal, where spheres of silica assume a close-packed locally periodic structure under moderate compression. Bulk properties of a colloidal crystal depend on composition, particle size, packing arrangement, and degree of regularity. Applications include photonics, materials processing, and the study of self-assembly and phase transitions.

<span class="mw-page-title-main">Smoothed octagon</span>

The smoothed octagon is a region in the plane found by Karl Reinhardt in 1934 and conjectured by him to have the lowest maximum packing density of the plane of all centrally symmetric convex shapes. It was also independently discovered by Kurt Mahler in 1947. It is constructed by replacing the corners of a regular octagon with a section of a hyperbola that is tangent to the two sides adjacent to the corner and asymptotic to the sides adjacent to these.

<span class="mw-page-title-main">Lubachevsky–Stillinger algorithm</span> Computational physics simulation algorithm

Lubachevsky-Stillinger (compression) algorithm is a numerical procedure suggested by F. H. Stillinger and B.D. Lubachevsky that simulates or imitates a physical process of compressing an assembly of hard particles. As the LSA may need thousands of arithmetic operations even for a few particles, it is usually carried out on a computer.

<span class="mw-page-title-main">Salvatore Torquato</span> American theoretical scientist

Salvatore Torquato is an American theoretical scientist born in Falerna, Italy. His research work has impacted a variety of fields, including physics, chemistry, applied and pure mathematics, materials science, engineering, and biological physics. He is the Lewis Bernard Professor of Natural Sciences in the Department of Chemistry and Princeton Institute for the Science and Technology of Materials at Princeton University. He has been a Senior Faculty Fellow in the Princeton Center for Theoretical Science, an enterprise dedicated to exploring frontiers across the theoretical natural sciences. He is also an Associated Faculty Member in three departments or programs at Princeton University: Physics, Program in Applied and Computational Mathematics, and Mechanical & Aerospace Engineering. On multiple occasions, he was a Member of the School of Mathematics as well as the School of Natural Sciences at the Institute for Advanced Study, Princeton, New Jersey.

Ulam's packing conjecture, named for Stanislaw Ulam, is a conjecture about the highest possible packing density of identical convex solids in three-dimensional Euclidean space. The conjecture says that the optimal density for packing congruent spheres is smaller than that for any other convex body. That is, according to the conjecture, the ball is the convex solid which forces the largest fraction of space to remain empty in its optimal packing structure. This conjecture is therefore related to the Kepler conjecture about sphere packing. Since the solution to the Kepler conjecture establishes that identical balls must leave ≈25.95% of the space empty, Ulam's conjecture is equivalent to the statement that no other convex solid forces that much space to be left empty.

Hyperuniform materials are mixed-component many-particle systems with unusually low fluctuations in component density at large scales, when compared to the distribution of constituents in common disordered systems, like a mixed ideal gas (air) or typical liquids or amorphous solids: A disordered hyperuniform system is statistically isotropic, like a liquid, but exhibits reduced long-wavelength density fluctuations, similar to crystals.

<span class="mw-page-title-main">Random sequential adsorption</span>

Random sequential adsorption (RSA) refers to a process where particles are randomly introduced in a system, and if they do not overlap any previously adsorbed particle, they adsorb and remain fixed for the rest of the process. RSA can be carried out in computer simulation, in a mathematical analysis, or in experiments. It was first studied by one-dimensional models: the attachment of pendant groups in a polymer chain by Paul Flory, and the car-parking problem by Alfréd Rényi. Other early works include those of Benjamin Widom. In two and higher dimensions many systems have been studied by computer simulation, including in 2d, disks, randomly oriented squares and rectangles, aligned squares and rectangles, various other shapes, etc.

Alessio Zaccone is an Italian physicist.

<span class="mw-page-title-main">Sphere packing in a cylinder</span> Three-dimensional packing problem

Sphere packing in a cylinder is a three-dimensional packing problem with the objective of packing a given number of identical spheres inside a cylinder of specified diameter and length. For cylinders with diameters on the same order of magnitude as the spheres, such packings result in what are called columnar structures.

Dov I. Levine is an American-Israeli physicist, known for his research on quasicrystals, soft condensed matter physics, and statistical mechanics out of equilibrium.

References

  1. Torquato, S.; Truskett, T.M.; Debenedetti, P.G. (2000). "Is Random Close Packing of Spheres Well Defined?". Physical Review Letters. 84 (10): 2064–2067. arXiv: cond-mat/0003416 . Bibcode:2000PhRvL..84.2064T. doi:10.1103/PhysRevLett.84.2064. PMID   11017210. S2CID   13149645.
  2. Modes of wall induced granular crystallisation in vibrational packing.Granular Matter, 21(2), 26
  3. Blumenfeld, Raphael (2021-09-09). "Disorder Criterion and Explicit Solution for the Disc Random Packing Problem". Physical Review Letters. 127 (11): 118002. arXiv: 2106.11774 . Bibcode:2021PhRvL.127k8002B. doi:10.1103/physrevlett.127.118002. ISSN   0031-9007. PMID   34558936. S2CID   237617506.
  4. Zaccone, Alessio (2022). "Explicit Analytical Solution for Random Close Packing in d=2 and d=3". Physical Review Letters. 128 (2): 028002. arXiv: 2201.04541 . Bibcode:2022PhRvL.128b8002Z. doi:10.1103/PhysRevLett.128.028002. PMID   35089741. S2CID   245877616.
  5. Weisstein, Eric W. "Random Close Packing". MathWorld .
  6. Likos, Christos (2022). "Maximizing space efficiency without order, analytically". Journal Club for Condensed Matter Physics. doi: 10.36471/JCCM_March_2022_02 . S2CID   247914694.
  7. Rosato, Anthony D.; Dybenko, Oleksandr; Horntrop, David J.; Ratnaswamy, Vishagan; Kondic, Lou (2010). "Microstructure Evolution in Density Relaxation by Tapping". Physical Review E. 81 (6): 061301. Bibcode:2010PhRvE..81f1301R. doi:10.1103/physreve.81.061301. PMID   20866410.
  8. Ratnaswamy, V.; Rosato, A.D.; Blackmore, D.; Tricoche, X.; Ching, Luo; Zuo, L. (2012). "Evolution of Solids Fraction Surfaces in Tapping: Simulation and Dynamical Systems Analysis". Granular Matter. 14 (2): 163–68. doi:10.1007/s10035-012-0343-2. S2CID   254114944.
  9. Donev, A.; Cisse, I.; Sachs, D.; Variano, E. A.; Stillinger, F. H.; Connelly, R.; Torquato, S.; Chaikin, P. M. (2004). "Improving the Density of Jammed Disordered Packings Using Ellipsoids". Science. 303 (5660): 990–993. Bibcode:2004Sci...303..990D. CiteSeerX   10.1.1.220.1156 . doi:10.1126/science.1093010. PMID   14963324. S2CID   33409855.
  10. Dullien, F. A. L. (1992). Porous Media: Fluid Transport and Pore Structure (2nd ed.). Academic Press. ISBN   978-0-12-223651-8.