Rapid bridge replacement

Last updated
Thermal lance cutting away a railroad bridge in Binghamton, New York to prepare for its overnight replacement. Thermal lance.2004-8-4.jpg
Thermal lance cutting away a railroad bridge in Binghamton, New York to prepare for its overnight replacement.
Self-propelled modular transporters moving Hamilton, Ontario's Aberdeen Bridge span into place. AberdeenBridgeReplacementCpyRgt2010.JPG
Self-propelled modular transporters moving Hamilton, Ontario's Aberdeen Bridge span into place.

Rapid bridge replacement or accelerated bridge construction (ABC) is a technique that allows bridges to be replaced with minimum disruption to traffic. The replacement bridge is constructed on a site near the bridge to be replaced. When it is completed, the old bridge is cut away and removed using self-propelled modular transporters (SPMTs). Then the SPMTs lift the new bridge, transfer it to the work site and put it in place. [1] Often the highway or railroad carried by the bridge is closed for just one weekend. Conventional techniques typically replace half a bridge at a time, with all highway traffic redirected under the other bridge half, often for a year or more, while construction progresses. Accelerated bridge construction (ABC) alternatives consist of ABC components and ABC techniques. Components can be categorized into prefabricated bridge elements (e.g. beams, bridge decks, footings, columns, pier caps, abutments etc.) or prefabricated bridge systems (e.g. bridge modules with superstructures and/or substructures). [2] [3] ABC involves fabrication of these elements or systems off-site in a regulated environment, and transporting those to site for installation. Related processes such as lifting, placement, transportation, embankment construction are termed as ABC techniques. [4]

Contents

Notable rapid bridge replacement projects include Interstate 93 in Massachusetts, where 14 bridges were replaced over 10 weekends in 2011. [5]

Standards

NEXT Beam

The first NEXT Beam bridge in York, Maine Maine Route 103 York River Bridge, NEXT Beams.jpg
The first NEXT Beam bridge in York, Maine

The development of Northeast Extreme Tee Beam or NEXT Beam was started in 2006 by the Precast/Prestressed Concrete Institute (PCI) North East to update regional standard on accelerated bridge construction for northeastern states of the United States. The NEXT Beam design was inspired by double-tee designs that have been used to build railroad platform slabs. The use of double tees with wide flanges allows the use of fewer beams, which stay in place to form the deck, resulting in a shorter construction time. The first design was introduced in 2008, called "NEXT F" with 4-inch (10 cm) flange thickness requiring a 4-inch (10 cm) topping. This was used for the construction of the Maine State Route 103 bridge that crosses the York River. The seven-span 510-foot (160 m) long bridge was completed in 2010 as the first NEXT beam bridge. The second design was introduced in 2010 for Sibley Pond Bridge at the border of Canaan and Pittsfield, Maine. The design was called "NEXT D" with an 8-inch (20 cm) flange thickness that does not require deck topping, allowing the wearing surface to be applied directly onto the beams. The combination of F and D, called "NEXT E", was introduced in 2016. [6] [7]

As of 2018, thirteen US states have accepted the NEXT beam standard: Connecticut, Delaware, Georgia, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, South Carolina, Vermont, and Virginia. New Brunswick, Canada also accepts the standard. [6]

Incidents

On March 15, 2018, a partially completed bridge at Florida International University collapsed five days after it was placed using this method. FIU is home to the Accelerated Bridge Construction University Transportation Center, a federally-funded center. FIU planned an independent investigation into the cause of the collapse. [8]

Related Research Articles

<span class="mw-page-title-main">Prestressed concrete</span> Form of concrete used in construction

Prestressed concrete is a form of concrete used in construction. It is substantially "prestressed" (compressed) during production, in a manner that strengthens it against tensile forces which will exist when in service.

<span class="mw-page-title-main">Jersey barrier</span> Modular concrete or plastic barrier for separating vehicle traffic

A Jersey barrier, Jersey wall, or Jersey bump is a modular concrete or plastic barrier employed to separate lanes of traffic. It is designed to minimize vehicle damage in cases of incidental contact while still preventing vehicle crossovers resulting in a likely head-on collision. Jersey barriers are also used to reroute traffic and protect pedestrians and workers during highway construction. They are named after the U.S. state of New Jersey which first started using the barriers as separators between lanes of a highway in the 1950s.

<span class="mw-page-title-main">Federal Highway Administration</span> US highway transportation agency

The Federal Highway Administration (FHWA) is a division of the United States Department of Transportation that specializes in highway transportation. The agency's major activities are grouped into two programs, the Federal-aid Highway Program and the Federal Lands Highway Program. Its role had previously been performed by the Office of Road Inquiry, Office of Public Roads and the Bureau of Public Roads.

<span class="mw-page-title-main">Plate girder bridge</span> Type of bridge

A plate girder bridge is a bridge supported by two or more plate girders.

<span class="mw-page-title-main">Box girder bridge</span> Type of bridge

A box girder bridge, or box section bridge, is a bridge in which the main beams comprise girders in the shape of a hollow box. The box girder normally comprises prestressed concrete, structural steel, or a composite of steel and reinforced concrete. The box is typically rectangular or trapezoidal in cross-section. Box girder bridges are commonly used for highway flyovers and for modern elevated structures of light rail transport. Although the box girder bridge is normally a form of beam bridge, box girders may also be used on cable-stayed and other bridges.

The National Bridge Inventory (NBI) is a database, compiled by the Federal Highway Administration, with information on all bridges and tunnels in the United States that have roads passing above or below them. That is similar to the grade-crossing identifier number database, compiled by the Federal Railroad Administration, which identifies all railroad crossings. The bridge information includes the design of the bridge and the dimensions of the usable portion. The data is often used to analyze bridges and to judge their condition. The inventory is developed for the purpose of having a unified database for bridges to ensure the safety of the traveling public, as required by the Federal Aid Highway Act of 1968. It includes identification information, bridge types and specifications, operational conditions, bridge data including geometric data and functional description, and inspection data. Any bridge more than 20 ft long used for vehicular traffic is included.

<span class="mw-page-title-main">Girder</span> Support beam used in construction

A girder is a beam used in construction. It is the main horizontal support of a structure which supports smaller beams. Girders often have an I-beam cross section composed of two load-bearing flanges separated by a stabilizing web, but may also have a box shape, Z shape, or other forms. Girders are commonly used to build bridges.

<span class="mw-page-title-main">Admiral Clarey Bridge</span> Bridge connecting Ford Island to Oʻahu within Pearl Harbor

Admiral Clarey Bridge, also known as the Ford Island Bridge, is a 4,672 ft (1,424 m) road bridge that connects Ford Island in Pearl Harbor to the mainland of Oahu, the third-largest island of Hawaii. A 930 ft (280 m) section of it is supported by pontoons, and can be moved to allow vessels to pass through. This floating moveable span is the largest in the world.

<span class="mw-page-title-main">Segmental bridge</span> Structure meant to span obstacles, assembled one piece at a time

A segmental bridge is a bridge built in short sections, i.e., one piece at a time, as opposed to traditional methods that build a bridge in very large sections. The bridge is made of concrete that is either cast-in-place or precast concrete.

<span class="mw-page-title-main">Seal Island Bridge</span> Canadian road bridge

The Seal Island Bridge is a bridge located in Victoria County, Nova Scotia. It is the third longest bridge span in the province.

<span class="mw-page-title-main">Orthotropic deck</span> Welded steel segmented construction technique for bridge decks

An orthotropic bridge or orthotropic deck is typically one whose fabricated deck consists of a structural steel deck plate stiffened either longitudinally with ribs or transversely, or in both directions. This allows the fabricated deck both to directly bear vehicular loads and to contribute to the bridge structure's overall load-bearing behaviour. The orthotropic deck may be integral with or supported on a grid of deck framing members, such as transverse floor beams and longitudinal girders. All these various choices for the stiffening elements, e.g., ribs, floor beams and main girders, can be interchanged, resulting in a great variety of orthotropic panels.

<span class="mw-page-title-main">Tied-arch bridge</span> Type of bridge

A tied-arch bridge is an arch bridge in which the outward-directed horizontal forces of the arch(es) are borne as tension by a chord tying the arch ends rather than by the ground or the bridge foundations. This strengthened chord may be the deck structure itself or consist of separate, independent tie-rods.

<span class="mw-page-title-main">Precast concrete</span> Construction material

Precast concrete is a construction product produced by casting concrete in a reusable mold or "form" which is then cured in a controlled environment, transported to the construction site and maneuvered into place; examples include precast beams, and wall panels for tilt up construction. In contrast, cast-in-place concrete is poured into site-specific forms and cured on site.

<span class="mw-page-title-main">Walnut Lane Memorial Bridge</span> Bridge in Philadelphia, Pennsylvania

The original Walnut Lane Memorial Bridge was a prestressed concrete girder bridge in Philadelphia, Pennsylvania, designed by Belgian Engineer Gustave Magnel and built by the City of Philadelphia. Completed and fully opened to traffic in 1951, this three-span bridge carried Walnut Lane over Lincoln Drive and Monoshone Creek. It was the first major prestressed concrete beam bridge designed and built in the United States when completed.

<span class="mw-page-title-main">Deep foundation</span> Type of foundation

A deep foundation is a type of foundation that transfers building loads to the earth farther down from the surface than a shallow foundation does to a subsurface layer or a range of depths. A pile or piling is a vertical structural element of a deep foundation, driven or drilled deep into the ground at the building site.

<span class="mw-page-title-main">T-beam</span> T-shaped construction module

A T-beam, used in construction, is a load-bearing structure of reinforced concrete, wood or metal, with a T-shaped cross section. The top of the T-shaped cross section serves as a flange or compression member in resisting compressive stresses. The web of the beam below the compression flange serves to resist shear stress. When used for highway bridges the beam incorporates reinforcing bars in the bottom of the beam to resist the tensile stresses which occur during bending.

<span class="mw-page-title-main">Double tee</span> Type of load-bearing structure

A double tee or double-T beam is a load-bearing structure that resembles two T-beams connected to each other side by side. The strong bond of the flange and the two webs creates a structure that is capable of withstanding high loads while having a long span. The typical sizes of double tees are up to 15 feet (4.6 m) for flange width, up to 5 feet (1.5 m) for web depth, and up to 80 feet (24 m) or more for span length. Double tees are pre-manufactured from prestressed concrete which allows construction time to be shortened.

<span class="mw-page-title-main">Launching gantry</span>

A launching gantry is a special-purpose mobile gantry crane used in bridge construction, specifically segmental bridges that use precast box girder bridge segments or precast girders in highway and high-speed rail bridge construction projects. The launching gantry is used to lift and support bridge segments or girders as they are placed while being supported by the bridge piers instead of the ground.

The Harbor Bridge Project is the replacement of the existing through arch bridge that crosses the Corpus Christi Ship Channel, which serves the Port of Corpus Christi in Corpus Christi, Texas, with a modern cable-stayed bridge design. The route will connect with SH 286 at its southern terminus and US 181 on the north. Groundbreaking on construction took place on August 8, 2016 and was scheduled to be completed by the spring of 2020, but was extensively delayed due to engineering and design issues, and is tentatively planned to be completed in 2025.

<span class="mw-page-title-main">Florida International University pedestrian bridge collapse</span> Bridge collapse in Sweetwater, Florida

The Florida International University pedestrian bridge collapse occurred on March 15, 2018, when a 175-foot-long section of the FIU-Sweetwater UniversityCity Pedestrian Bridge collapsed while under construction. The collapse resulted in six deaths, ten injuries, and eight vehicles being crushed underneath. Of the serious injuries, one employee was permanently disabled. At the time of the collapse, six lanes of road beneath the bridge were open to traffic.

References

  1. "The ABCs of a Rapid Bridge Replacement in Utah". Federal Highway Administration, US Department of Transportation. December 2007.
  2. Salem, O.; Salman, B.; Ghorai, S. (2017). "Accelerating construction of roadway bridges using alternative techniques and procurement methods". Transport . 33 (2): 567–579. doi: 10.3846/16484142.2017.1300942 .
  3. Culmo, M. P. (2011). "Accelerated Bridge Construction: Experience in Design, Fabrication and Erection of Prefabricated Bridge Elements and Systems" (PDF). Federal Highway Administration (FHWA), US Department of Transportation. p. 347. Publication No HIF-12-013.
  4. FHWA (2012). "Prefabricated Bridge Elements and Systems (PBES) Definitions". Federal Highway Administration (FHWA), US Department of Transportation.
  5. John Schwartz (17 April 2012). "Did Someone Order an Instant Bridge?". The New York Times .
  6. 1 2 ABC – UTC Webinar 2-15-18 Northeast Extreme Tee (NEXT) Beam with Rochester VT Case Study (PDF). Precast/Prestressed Concrete Institute Northeast. 15 February 2018. Retrieved 15 July 2020.
  7. Gardner, Lauren S.; Hodgdon, Steven M. "The first NEXT beam bridge" (PDF). PCI Journal. Winter 2013: 55–62. Retrieved 15 July 2020.
  8. Bridge Collapse Saps Spirits and Research Efforts at Florida International University, By PATRICIA MAZZEI and STEPHANIE SAUL, New York Times, MARCH 17, 2018