Red Queen hypothesis

Last updated

The Red Queen's hypothesis is a hypothesis in evolutionary biology proposed in 1973, that species must constantly adapt, evolve, and proliferate in order to survive while pitted against ever-evolving opposing species. The hypothesis was intended to explain the constant (age-independent) extinction probability as observed in the paleontological record caused by co-evolution between competing species; [1] however, it has also been suggested that the Red Queen hypothesis explains the advantage of sexual reproduction (as opposed to asexual reproduction) at the level of individuals, [2] and the positive correlation between speciation and extinction rates in most higher taxa. [3]

Contents

Origin

"Now, here, you see, it takes all the running you can do, to keep in the same place." -- Lewis Carroll Alice queen2.jpg
"Now, here, you see, it takes all the running you can do, to keep in the same place." — Lewis Carroll

In 1973, Leigh Van Valen proposed the hypothesis as an "explanatory tangent" to explain the "law of extinction" known as "Van Valen's law", [1] which states that the probability of extinction does not depend on the lifetime of the species or higher-rank taxon, instead being constant over millions of years for any given taxon. However, the probability of extinction is strongly related to adaptive zones, because different taxa have different probabilities of extinction. [1] In other words, extinction of a species occurs randomly with respect to age, but nonrandomly with respect to ecology. Collectively, these two observations suggest that the effective environment of any homogeneous group of organisms deteriorates at a stochastically constant rate. Van Valen proposed that this is the result of an evolutionary zero-sum game driven by interspecific competition: the evolutionary progress (= increase in fitness) of one species deteriorates the fitness of coexisting species, but because coexisting species evolve as well, no one species gains a long-term increase in fitness, and the overall fitness of the system remains constant.

Van Valen named the hypothesis "Red Queen" because under his hypothesis, species have to "run" or evolve in order to stay in the same place, or else go extinct as the Red Queen said to Alice in Lewis Carroll's Through the Looking-Glass in her explanation of the nature of Looking-Glass Land:

Now, here, you see, it takes all the running you can do, to keep in the same place. [4]

Examples

Positive correlation between speciation and extinction rates (Stanley's rule)

The "law of extinction": The linear relationship between survival times and the logarithm of the number of genera suggests that the probability of extinction is constant over time. Redrawn from Leigh Van Valen (1973). The macroevolutionary Red Queen.png
The "law of extinction": The linear relationship between survival times and the logarithm of the number of genera suggests that the probability of extinction is constant over time. Redrawn from Leigh Van Valen (1973).

Palaeontological data suggest that high speciation rates correlate with high extinction rates in almost all major taxa. [5] [6] This correlation has been attributed to a number of ecological factors, [7] but it may result also from a Red Queen situation, in which each speciation event in a clade deteriorates the fitness of coexisting species in the same clade (provided that there is phylogenetic niche conservatism). [3]

Evolution of sex

Discussions of the evolution of sex was not part of Van Valen's Red Queen hypothesis, which addressed evolution at scales above the species level. The microevolutionary version of the Red Queen hypothesis was proposed by Bell (1982), also citing Lewis Carroll, but not citing Van Valen.

The Red Queen hypothesis is used independently by Hartung [8] and Bell to explain the evolution of sex, [2] by John Jaenike to explain the maintenance of sex [9] and W. D. Hamilton to explain the role of sex in response to parasites. [10] [11] In all cases, sexual reproduction confers species variability and a faster generational response to selection by making offspring genetically unique. Sexual species are able to improve their genotype in changing conditions. Consequently, co-evolutionary interactions, between host and parasite, for example, may select for sexual reproduction in hosts in order to reduce the risk of infection. Oscillations in genotype frequencies are observed between parasites and hosts in an antagonistic coevolutionary way [12] without necessitating changes to the phenotype. In multi-host and multi-parasite coevolution, the Red Queen dynamics could affect what host and parasite types will become dominant or rare. [13] Science writer Matt Ridley popularized the term in connection with sexual selection in his 1993 book The Red Queen , in which he discussed the debate in theoretical biology over the adaptive benefit of sexual reproduction to those species in which it appears. The connection of the Red Queen to this debate arises from the fact that the traditionally accepted Vicar of Bray hypothesis only showed adaptive benefit at the level of the species or group, not at the level of the gene (although the protean "Vicar of Bray" adaptation is very useful to some species that belong to the lower levels of the food chain). By contrast, a Red-Queen-type thesis suggesting that organisms are running cyclic arms races with their parasites can explain the utility of sexual reproduction at the level of the gene by positing that the role of sex is to preserve genes that are currently disadvantageous, but that will become advantageous against the background of a likely future population of parasites.

Further evidence of the Red Queen hypothesis was observed in allelic effects under sexual selection. The Red Queen hypothesis leads to the understanding that allelic recombination is advantageous for populations that engage in aggressive biotic interactions, such as predator-prey or parasite-host interactions. In cases of parasite-host relations, sexual reproduction can quicken the production of new multi-locus genotypes allowing the host to escape parasites that have adapted to the prior generations of typical hosts. [14] Mutational effects can be represented by models to describe how recombination through sexual reproduction can be advantageous. According to the mutational deterministic hypothesis, if the deleterious mutation rate is high, and if those mutations interact to cause a general decline in organismal fitness, then sexual reproduction provides an advantage over asexually reproducing organisms by allowing populations to eliminate the deleterious mutations not only more rapidly, but also most effectively. [14] Recombination is one of the fundamental means that explain why many organisms have evolved to reproduce sexually.

Sexual organisms must spend resources to find mates. In the case of sexual dimorphism, usually one of the sexes contributes more to the survival of their offspring (usually the mother). In such cases, the only adaptive benefit of having a second sex is the possibility of sexual selection, by which organisms can improve their genotype.

Evidence for this explanation for the evolution of sex is provided by the comparison of the rate of molecular evolution of genes for kinases and immunoglobulins in the immune system with genes coding other proteins. The genes coding for immune system proteins evolve considerably faster. [15] [16]

Further evidence for the Red Queen hypothesis was provided by observing long-term dynamics and parasite coevolution in a mixed sexual and asexual population of snails ( Potamopyrgus antipodarum ). The number of sexuals, the number of asexuals, and the rates of parasitic infection for both were monitored. It was found that clones that were plentiful at the beginning of the study became more susceptible to parasites over time. As parasite infections increased, the once-plentiful clones dwindled dramatically in number. Some clonal types disappeared entirely. Meanwhile, sexual snail populations remained much more stable over time. [17] [18]

In 2011, researchers used the microscopic roundworm Caenorhabditis elegans as a host and the pathogenic bacterium Serratia marcescens to generate a host–parasite coevolutionary system in a controlled environment, allowing them to conduct more than 70 evolution experiments testing the Red Queen hypothesis. They genetically manipulated the mating system of C. elegans, causing populations to mate either sexually, by self-fertilization, or a mixture of both within the same population. Then they exposed those populations to the S. marcescens parasite. It was found that the self-fertilizing populations of C. elegans were rapidly driven extinct by the coevolving parasites, while sex allowed populations to keep pace with their parasites, a result consistent with the Red Queen hypothesis. [19] [20]

Currently, there is no consensus among biologists on the main selective forces maintaining sex. The competing models to explain the adaptive function of sex have been reviewed by Birdsell and Wills. [21]

Evolution of aging

Predator-prey relationship between rabbits and foxes following the principle of the Red Queen hypothesis. The rabbit evolves increasing speed to escape the attack of the fox, and the fox evolves increasing speed to reach the rabbit. This evolution is constant; were one of the two to stop evolving, it would go extinct. Red Queen hypothesis in predator-prey model.png
Predator-prey relationship between rabbits and foxes following the principle of the Red Queen hypothesis. The rabbit evolves increasing speed to escape the attack of the fox, and the fox evolves increasing speed to reach the rabbit. This evolution is constant; were one of the two to stop evolving, it would go extinct.

The Red Queen hypothesis has been invoked by some authors to explain evolution of aging. [22] [23] The main idea is that aging is favored by natural selection since it allows faster adaptation to changing conditions, especially in order to keep pace with the evolution of pathogens, predators and prey. [23]

Interspecies race

A number of predator/prey species couple compete via running speed. "The rabbit runs faster than the fox, because the rabbit is running for his life while the fox is only running for his dinner." Aesop [24] The predator-prey relationship can also be established in the microbial world, producing the same evolutionary phenomenon that occurs in the case of foxes and rabbits. A recently observed example has as protagonists M.xanthus (predator) and E.coli (prey) in which a parallel evolution of both species can be observed through genomic and phenotypic modifications, producing in future generations a better adaptation of one of the species that is counteracted by the evolution of the other, thus generating an arms race that can only be stopped by the extinction of one of the species. [25]

The interactions between parasitoid wasps and insect larvae, necessary for the parasitic wasp's life cycle, are also a good illustration of a race. Evolutionary strategy was found by both partners to respond to the pressure generated by the mutual association of lineages. For example, the parasitoid wasp group, Campoletis sonorensis, is able to fight against the immune system of its hosts, Heliothis virescens (Lepidopteran) with the association of a polydnavirus (PDV) (Campoletis sonorensis PDV). During the oviposition process, the parasitoid transmits the virus (CsPDV) to the insect larva. The CsPDV will alter the physiology, growth and development of the infected insect larvae to the benefit of the parasitoid. [26]

Competing evolutionary ideas

A competing evolutionary idea is the court jester hypothesis, which indicates that an arms race is not the driving force of evolution on a large scale, but rather it is abiotic factors. [27] [28]

The Black Queen hypothesis is a theory of reductive evolution that suggests natural selection can drive organisms to reduce their genome size. [29] In other words, a gene that confers a vital biological function can become dispensable for an individual organism if its community members express that gene in a "leaky" fashion. Like the Red Queen hypothesis, the Black Queen hypothesis is a theory of co-evolution.

Trivia

Van Valen originally submitted his article to the Journal of Theoretical Biology , where it was accepted for publication. However, because "the manner of processing depended on payment of page charges", [1] Van Valen withdrew his manuscript and founded a new Journal called Evolutionary Theory , in which he published his manuscript as the first paper. Van Valen's acknowledgement to the National Science Foundation ran: "I thank the National Science Foundation for regularly rejecting my (honest) grant applications for work on real organisms, thus forcing me into theoretical work". [1]

See also

Related Research Articles

<span class="mw-page-title-main">Asexual reproduction</span> Reproduction without a sexual process

Asexual reproduction is a type of reproduction that does not involve the fusion of gametes or change in the number of chromosomes. The offspring that arise by asexual reproduction from either unicellular or multicellular organisms inherit the full set of genes of their single parent and thus the newly created individual is genetically and physically similar to the parent or an exact clone of the parent. Asexual reproduction is the primary form of reproduction for single-celled organisms such as archaea and bacteria. Many eukaryotic organisms including plants, animals, and fungi can also reproduce asexually. In vertebrates, the most common form of asexual reproduction is parthenogenesis, which is typically used as an alternative to sexual reproduction in times when reproductive opportunities are limited. Komodo dragons and some monitor lizards can reproduce asexually.

<span class="mw-page-title-main">Evolution</span> Change in the heritable characteristics of biological populations

Evolution is the change in the heritable characteristics of biological populations over successive generations. Evolution occurs when evolutionary processes such as natural selection and genetic drift act on genetic variation, resulting in certain characteristics becoming more or less common within a population over successive generations. The process of evolution has given rise to biodiversity at every level of biological organisation.

<span class="mw-page-title-main">Reproduction</span> Biological process by which new organisms are generated from one or more parent organisms

Reproduction is the biological process by which new individual organisms – "offspring" – are produced from their "parent" or parents. There are two forms of reproduction: asexual and sexual.

<span class="mw-page-title-main">Ectosymbiosis</span> Symbiosis in which the symbiont lives on the body surface of the host

Ectosymbiosis is a form of symbiotic behavior in which an organism lives on the body surface of another organism, including internal surfaces such as the lining of the digestive tube and the ducts of glands. The ectosymbiotic species, or ectosymbiont, is generally an immobile organism existing off of biotic substrate through mutualism, commensalism, or parasitism. Ectosymbiosis is found throughout a diverse array of environments and in many different species.

<span class="mw-page-title-main">Coevolution</span> Two or more species influencing each others evolution

In biology, coevolution occurs when two or more species reciprocally affect each other's evolution through the process of natural selection. The term sometimes is used for two traits in the same species affecting each other's evolution, as well as gene-culture coevolution.

<span class="mw-page-title-main">Bdelloidea</span> Class of parthenogenetic freshwater rotifers

Bdelloidea is a class of rotifers found in freshwater habitats all over the world. There are over 450 described species of bdelloid rotifers, distinguished from each other mainly on the basis of morphology. The main characteristics that distinguish bdelloids from related groups of rotifers are exclusively parthenogenetic reproduction and the ability to survive in dry, harsh environments by entering a state of desiccation-induced dormancy (anhydrobiosis) at any life stage. They are often referred to as "ancient asexuals" due to their unique asexual history that spans back to over 25 million years ago through fossil evidence. Bdelloid rotifers are microscopic organisms, typically between 150 and 700 µm in length. Most are slightly too small to be seen with the naked eye, but appear as tiny white dots through even a weak hand lens, especially in bright light. In June 2021, biologists reported the restoration of bdelloid rotifers after being frozen for 24,000 years in the Siberian permafrost.

<span class="mw-page-title-main">Biological life cycle</span> Series of stages of an organism

In biology, a biological life cycle is a series of stages of the life of an organism, that begins as a zygote, often in an egg, and concludes as an adult that reproduces, producing an offspring in the form of a new zygote which then itself goes through the same series of stages, the process repeating in a cyclic fashion.

<span class="mw-page-title-main">Muller's ratchet</span> Accumulation of harmful mutations

In evolutionary genetics, Muller's ratchet is a process which, in the absence of recombination, results in an accumulation of irreversible deleterious mutations. This happens because in the absence of recombination, and assuming reverse mutations are rare, offspring bear at least as much mutational load as their parents. Muller proposed this mechanism as one reason why sexual reproduction may be favored over asexual reproduction, as sexual organisms benefit from recombination and consequent elimination of deleterious mutations. The negative effect of accumulating irreversible deleterious mutations may not be prevalent in organisms which, while they reproduce asexually, also undergo other forms of recombination. This effect has also been observed in those regions of the genomes of sexual organisms that do not undergo recombination.

<span class="mw-page-title-main">Evolutionary biology</span> Study of the processes that produced the diversity of life

Evolutionary biology is the subfield of biology that studies the evolutionary processes that produced the diversity of life on Earth. It is also defined as the study of the history of life forms on Earth. Evolution holds that all species are related and gradually change over generations. In a population, the genetic variations affect the phenotypes of an organism. These changes in the phenotypes will be an advantage to some organisms, which will then be passed on to their offspring. Some examples of evolution in species over many generations are the peppered moth and flightless birds. In the 1930s, the discipline of evolutionary biology emerged through what Julian Huxley called the modern synthesis of understanding, from previously unrelated fields of biological research, such as genetics and ecology, systematics, and paleontology.

<span class="mw-page-title-main">Evolution of sexual reproduction</span> How sexually reproducing multicellular organisms could have evolved from a common ancestor species

Sexual reproduction is an adaptive feature which is common to almost all multicellular organisms and various unicellular organisms. Currently, the adaptive advantage of sexual reproduction is widely regarded as a major unsolved problem in biology. As discussed below, one prominent theory is that sex evolved as an efficient mechanism for producing variation, and this had the advantage of enabling organisms to adapt to changing environments. Another prominent theory, also discussed below, is that a primary advantage of outcrossing sex is the masking of the expression of deleterious mutations. Additional theories concerning the adaptive advantage of sex are also discussed below. Sex does, however, come with a cost. In reproducing asexually, no time nor energy needs to be expended in choosing a mate and, if the environment has not changed, then there may be little reason for variation, as the organism may already be well-adapted. However, very few environments have not changed over the millions of years that reproduction has existed. Hence it is easy to imagine that being able to adapt to changing environment imparts a benefit. Sex also halves the amount of offspring a given population is able to produce. Sex, however, has evolved as the most prolific means of species branching into the tree of life. Diversification into the phylogenetic tree happens much more rapidly via sexual reproduction than it does by way of asexual reproduction.

In biology, adaptation has three related meanings. Firstly, it is the dynamic evolutionary process of natural selection that fits organisms to their environment, enhancing their evolutionary fitness. Secondly, it is a state reached by the population during that process. Thirdly, it is a phenotypic trait or adaptive trait, with a functional role in each individual organism, that is maintained and has evolved through natural selection.

In evolutionary biology, an evolutionary arms race is an ongoing struggle between competing sets of co-evolving genes, phenotypic and behavioral traits that develop escalating adaptations and counter-adaptations against each other, resembling the geopolitical concept of an arms race. These are often described as examples of positive feedback. The co-evolving gene sets may be in different species, as in an evolutionary arms race between a predator species and its prey, or a parasite and its host. Alternatively, the arms race may be between members of the same species, as in the manipulation/sales resistance model of communication or as in runaway evolution or Red Queen effects. One example of an evolutionary arms race is in sexual conflict between the sexes, often described with the term Fisherian runaway. Thierry Lodé emphasized the role of such antagonistic interactions in evolution leading to character displacements and antagonistic coevolution.

<span class="mw-page-title-main">Vicar of Bray (scientific hypothesis)</span> Fisherian explanation of the evolution of sexual reproduction and recombination

The "Vicar of Bray" hypothesis attempts to explain why sexual reproduction might have advantages over asexual reproduction. Reproduction is the process by which organisms give rise to offspring. Asexual reproduction involves a single parent and results in offspring that are genetically identical to each other and to the parent.

Host–parasite coevolution is a special case of coevolution, where a host and a parasite continually adapt to each other. This can create an evolutionary arms race between them. A more benign possibility is of an evolutionary trade-off between transmission and virulence in the parasite, as if it kills its host too quickly, the parasite will not be able to reproduce either. Another theory, the Red Queen hypothesis, proposes that since both host and parasite have to keep on evolving to keep up with each other, and since sexual reproduction continually creates new combinations of genes, parasitism favours sexual reproduction in the host.

<span class="mw-page-title-main">Ecological fitting</span> Biological process

Ecological fitting is "the process whereby organisms colonize and persist in novel environments, use novel resources or form novel associations with other species as a result of the suites of traits that they carry at the time they encounter the novel condition". It can be understood as a situation in which a species' interactions with its biotic and abiotic environment seem to indicate a history of coevolution, when in actuality the relevant traits evolved in response to a different set of biotic and abiotic conditions.

Interlocus sexual conflict is a type of sexual conflict that occurs through the interaction of a set of antagonistic alleles at two or more different loci, or the location of a gene on a chromosome, in males and females, resulting in the deviation of either or both sexes from the fitness optima for the traits. A co-evolutionary arms race is established between the sexes in which either sex evolves a set of antagonistic adaptations that is detrimental to the fitness of the other sex. The potential for reproductive success in one organism is strengthened while the fitness of the opposite sex is weakened. Interlocus sexual conflict can arise due to aspects of male–female interactions such as mating frequency, fertilization, relative parental effort, female remating behavior, and female reproductive rate.

<span class="mw-page-title-main">Evolving digital ecological network</span>

Evolving digital ecological networks are webs of interacting, self-replicating, and evolving computer programs that experience the same major ecological interactions as biological organisms. Despite being computational, these programs evolve quickly in an open-ended way, and starting from only one or two ancestral organisms, the formation of ecological networks can be observed in real-time by tracking interactions between the constantly evolving organism phenotypes. These phenotypes may be defined by combinations of logical computations that digital organisms perform and by expressed behaviors that have evolved. The types and outcomes of interactions between phenotypes are determined by task overlap for logic-defined phenotypes and by responses to encounters in the case of behavioral phenotypes. Biologists use these evolving networks to study active and fundamental topics within evolutionary ecology.

<span class="mw-page-title-main">Outline of evolution</span>

The following outline is provided as an overview of and topical guide to evolution:

<span class="mw-page-title-main">Fluctuating selection</span>

Fluctuating selection is a mode of natural selection characterized by the fluctuation of the direction of selection on a given phenotype over a relatively brief period of evolutionary time. For example, a species of plant may come in two varieties: one which prefers wetter soil and one which prefers dryer soil. During a period of wet years, the wet variety will be more fit and produce more offspring, and thereby increase the frequency of wet-preferring plants. If this wet period is followed by drought, the dry variety will be selected for and its numbers will increase. As periods of dryness and wetness fluctuate, so too does selection on dry-preferring and wet-preferring plants. Fluctuating selection is also manifest at the genic level. Consider two alleles, A and B, which are found at the same locus. Fluctuating selection dynamics are at play when selection favors A at time t0, B at t1 and A again at t2.

<span class="mw-page-title-main">Social selection</span> Term used in biology

Social selection is a term used with varying meanings in biology.

References

  1. 1 2 3 4 5 Van Valen, Leigh (1973). "A new evolutionary law" (PDF). Evolutionary Theory . 1: 1–30.
  2. 1 2 Bell, G. (1982). The Masterpiece Of Nature: The Evolution and Genetics of Sexuality. University of California Press, Berkeley, 378 pp.
  3. 1 2 Hautmann, Michael (2020). "What is macroevolution?". Palaeontology . 63 (1): 1–11. doi:10.1111/pala.12465. ISSN   0031-0239.
  4. 1 2 Carroll, Lewis (1991) [1871]. "2: The Garden of Live Flowers". Through the Looking-Glass (The Millennium Fulcrum Edition 1.7 ed.). Project Gutenberg. Retrieved 26 September 2017.
  5. Stanley, Steven M. (1979). Macroevolution, pattern and process. San Francisco: W.H. Freeman. ISBN   0-7167-1092-7. OCLC   5101557.
  6. Marshall, Charles R. (June 2017). "Five palaeobiological laws needed to understand the evolution of the living biota". Nature Ecology & Evolution. 1 (6): 0165. doi:10.1038/s41559-017-0165. ISSN   2397-334X. PMID   28812640. S2CID   37248987.
  7. Stanley, Steven M. (1985). "Rates of evolution". Paleobiology. 11 (1): 13–26. doi:10.1017/S0094837300011362. ISSN   0094-8373. S2CID   84411092.
  8. . Genome Parliaments and Sex with the Red Queen. In: Alexander, R.D., Tinkle, D. W., Eds. Natural Selection and Social Behavior: Recent Research and New Theory. New York: Chiron Press, 1981, 382–402
  9. Jaenike, J. (1978). "An hypothesis to account for the maintenance of sex within populations". Evolutionary Theory. 3: 191–194.
  10. Hamilton, W. D.; Axelrod, R.; Tanese, R. (1990). "Sexual reproduction as an adaptation to resist parasites". Proceedings of the National Academy of Sciences of the USA. 87 (9): 3566–3573. Bibcode:1990PNAS...87.3566H. doi: 10.1073/pnas.87.9.3566 . PMC   53943 . PMID   2185476.
  11. Hamilton, W. D. (1980). "Sex versus non-sex versus parasite". Oikos. 35 (2): 282–290. doi:10.2307/3544435. JSTOR   3544435.
  12. Rabajante, J.; et al. (2015). "Red Queen dynamics in multi-host and multi-parasite interaction system". Scientific Reports . 5: 10004. Bibcode:2015NatSR...510004R. doi:10.1038/srep10004. ISSN   2045-2322. PMC   4405699 . PMID   25899168.
  13. Rabajante, J; et al. (2016). "Host-parasite Red Queen dynamics with phase-locked rare genotypes". Science Advances . 2 (3): e1501548. Bibcode:2016SciA....2E1548R. doi:10.1126/sciadv.1501548. ISSN   2375-2548. PMC   4783124 . PMID   26973878.
  14. 1 2 Cooper, T. F.; Lenski, R. E.; Elena, S. F. (2005). "Parasites and mutational load: An experimental test of a pluralistic theory for the evolution of sex". Proceedings of the Royal Society B: Biological Sciences. Royal Society. 272 (1560): 311–317. doi:10.1098/rspb.2004.2975. PMC   1634976 . PMID   15705557.
  15. Kuma, K.; Iwabe, N.; Miyata, T. (1995). "Functional constraints against variations on molecules from the tissue-level: Slowly evolving brain-specific genes demonstrated by protein-kinase and immunoglobulin supergene families". Molecular Biology and Evolution. 12 (1): 123–130. doi: 10.1093/oxfordjournals.molbev.a040181 . PMID   7877487.
  16. Wolfe, K. H.; Sharp, P. M. (1993). "Mammalian gene evolution: Nucleotide-sequence divergence between mouse and rat". Journal of Molecular Evolution. 37 (4): 441–456. Bibcode:1993JMolE..37..441W. doi:10.1007/BF00178874. PMID   8308912. S2CID   10437152.
  17. Jokela, Jukka; Dybdahl, Mark; Lively, Curtis (2009). "The Maintenance of Sex, Clonal Dynamics, and Host-Parasite Coevolution in a Mixed Population of Sexual and Asexual Snails". The American Naturalist. 174 (s1): S43–S53. doi:10.1086/599080. JSTOR   10.1086/599080. PMID   19441961. S2CID   6797643.
  18. "Parasites May Have Had Role in Evolution of Sex". Science Daily. 31 July 2009. Retrieved 19 September 2011.
  19. Morran, Levi T.; Schmidt, Olivia G.; Gelarden, Ian A. II; Parrish, Raymond C.; Lively, Curtis M. (2011). "Running with the Red Queen: Host-Parasite Coevolution Selects for Biparental Sex". Science . 333 (6039): 216–218. Bibcode:2011Sci...333..216M. doi:10.1126/science.1206360. PMC   3402160 . PMID   21737739.
  20. "Sex — as We Know It — Works Thanks to Ever-Evolving Host-Parasite Relationships, Biologists Find". Science Daily. 9 July 2011. Retrieved 19 September 2011.
  21. Birdsell JA, Wills C (2003). The evolutionary origin and maintenance of sexual recombination: A review of contemporary models. Evolutionary Biology Series >> Evolutionary Biology, Vol. 33 pp. 27–137. MacIntyre, Ross J.; Clegg, Michael, T (Eds.), Springer. Hardcover ISBN   978-0306472619, ISBN   0306472619 Softcover ISBN   978-1-4419-3385-0.
  22. Mitteldorf, Josh; Pepper, John (2009). "Senescence as an adaptation to limit the spread of disease". Journal of Theoretical Biology. 260 (2): 186–195. Bibcode:2009JThBi.260..186M. doi: 10.1016/j.jtbi.2009.05.013 . ISSN   0022-5193. PMID   19481552.
  23. 1 2 Lenart, Peter; Bienertová-Vašků, Julie (2016). "Keeping up with the Red Queen: the pace of aging as an adaptation". Biogerontology. 18 (4): 693–709. doi:10.1007/s10522-016-9674-4. ISSN   1389-5729. PMID   28013399. S2CID   11048849.
  24. Dawkins, Richard. The Selfish Gene:30th Anniversary Edition. Oxford University Press, 2006, p. 250.
  25. Nair, Ramith R.; Vasse, Marie; Wielgoss, Sébastien; Sun, Lei; Yu, Yuen-Tsu N.; Velicer, Gregory J. "Bacterial predator-prey coevolution accelerates genome evolution and selects on virulence-associated prey defences", Nature Communications, 2019, 10:4301.
  26. Kent, Shelby; Bruce, Webb (1999). "Polydnavirus-mediated suppression of insect immunity". Journal of Insect Physiology. 45 (5): 507–514. doi:10.1016/S0022-1910(98)00144-9. PMID   12770335.
  27. Benton, Michael J. (2009). "The Red Queen and the Court Jester: Species Diversity and the Role of Biotic and Abiotic Factors Through Time". Science. 323 (5915): 728–732. Bibcode:2009Sci...323..728B. doi:10.1126/science.1157719. PMID   19197051. S2CID   206512702.
  28. Sahney, S.; Benton, M.J.; Ferry, P.A. (2010). "Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land". Biology Letters. 6 (4): 544–547. doi:10.1098/rsbl.2009.1024. PMC   2936204 . PMID   20106856.
  29. Morris, Jeffrey J.; Lenski, Richard E.; Zinser, Erik R. (March 23, 2012). "The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss". mBio. 3 (2). doi:10.1128/mBio.00036-12. PMC   3315703 . PMID   22448042.

Further reading