Reduced level

Last updated

In surveying, reduced level (RL) refers to equating elevations of survey points with reference to a common assumed vertical datum. It is a vertical distance between survey point and adopted datum surface. [1] Thus, it is considered as the base level which is used as reference to reckon heights or depths of other places or structures in that area, region or country. [2] The word "Reduced" here means "equating" and the word "level" means "elevation". Datum may be a real or imaginary location with a nominated elevation. [3]

Contents

Datum used

The most common and convenient datum which is internationally accepted is mean sea level which is a universal measure and based upon a common base line in the whole world determined by earth's gravitational model (see geoid) that gives the standard to measure elevation of a place above or below mean sea level.

Countries adopt their nearby mean sea levels as datum planes for calculations of reduced levels in their respective jurisdictions. For example, Pakistan takes sea near Karachi as its datum while India takes sea near Mumbai as its datum for calculation of reduced levels. The term reduced level is denoted shortly by 'RL'. National survey departments of each country determine RLs of significantly important locations or points. These points are called permanent benchmarks and this survey process is known as Great Trigonometrical Surveying (GTS). The permanent benchmarks act as reference points for determining RLs of other locations in a particular country. [4] [5] [6] [7]

Instruments

The instruments used to determine reduced level include:

RL calculation

RL of a survey point can be determined by two methods:

  1. Height of instrument method
  2. Rise and fall method

Significance

  1. For drainage of water under gravity a suitable slope is required. Thus, roads are built in the fashion that their RL's on sides are comparatively smaller than the RL at the mid-span of the road. This ensures proper drainage of water from roads.
  2. For construction of buildings, roads, and dams, a horizontal levelled surface is required. So, at construction sites, RLs of different points are obtained. The ground surface is then being levelled to the RL, which is obtained by taking the arithmetic mean of RLs of different points. [9]

Related Research Articles

<span class="mw-page-title-main">Geodesy</span> Science of measuring the shape, orientation, and gravity of the Earth and other astronomical bodies

Geodesy is the science of measuring and representing the geometry, gravity, and spatial orientation of the Earth in temporally varying 3D. It is called planetary geodesy when studying other astronomical bodies, such as planets or circumplanetary systems.

<span class="mw-page-title-main">Surveying</span> Science of determining the positions of points and the distances and angles between them

Surveying or land surveying is the technique, profession, art, and science of determining the terrestrial two-dimensional or three-dimensional positions of points and the distances and angles between them. These points are usually on the surface of the Earth, and they are often used to establish maps and boundaries for ownership, locations, such as the designed positions of structural components for construction or the surface location of subsurface features, or other purposes required by government or civil law, such as property sales.

<span class="mw-page-title-main">Sea level</span> Geographical reference point from which various heights are measured

Mean sea level is an average surface level of one or more among Earth's coastal bodies of water from which heights such as elevation may be measured. The global MSL is a type of vertical datum – a standardised geodetic datum – that is used, for example, as a chart datum in cartography and marine navigation, or, in aviation, as the standard sea level at which atmospheric pressure is measured to calibrate altitude and, consequently, aircraft flight levels. A common and relatively straightforward mean sea-level standard is instead a long-term average of tide gauge readings at a particular reference location.

<span class="mw-page-title-main">Topographic map</span> Medium to large scale map that shows a precise map of the terrain

In modern mapping, a topographic map or topographic sheet is a type of map characterized by large-scale detail and quantitative representation of relief features, usually using contour lines, but historically using a variety of methods. Traditional definitions require a topographic map to show both natural and artificial features. A topographic survey is typically based upon a systematic observation and published as a map series, made up of two or more map sheets that combine to form the whole map. A topographic map series uses a common specification that includes the range of cartographic symbols employed, as well as a standard geodetic framework that defines the map projection, coordinate system, ellipsoid and geodetic datum. Official topographic maps also adopt a national grid referencing system.

<span class="mw-page-title-main">World Geodetic System</span> Geodetic reference system

The World Geodetic System (WGS) is a standard used in cartography, geodesy, and satellite navigation including GPS. The current version, WGS 84, defines an Earth-centered, Earth-fixed coordinate system and a geodetic datum, and also describes the associated Earth Gravitational Model (EGM) and World Magnetic Model (WMM). The standard is published and maintained by the United States National Geospatial-Intelligence Agency.

<span class="mw-page-title-main">Geodetic datum</span> Reference frame for measuring location

A geodetic datum or geodetic system is a global datum reference or reference frame for precisely representing the position of locations on Earth or other planetary bodies by means of geodetic coordinates. Datums are crucial to any technology or technique based on spatial location, including geodesy, navigation, surveying, geographic information systems, remote sensing, and cartography. A horizontal datum is used to measure a location across the Earth's surface, in latitude and longitude or another coordinate system; a vertical datum is used to measure the elevation or depth relative to a standard origin, such as mean sea level (MSL). Since the rise of the global positioning system (GPS), the ellipsoid and datum WGS 84 it uses has supplanted most others in many applications. The WGS 84 is intended for global use, unlike most earlier datums.

<span class="mw-page-title-main">Levelling</span> Surveying technique

Levelling or leveling is a branch of surveying, the object of which is to establish or verify or measure the height of specified points relative to a datum. It is widely used in geodesy and cartography to measure vertical position with respect to a vertical datum, and in construction to measure height differences of construction artifacts.

<span class="mw-page-title-main">Elevation</span> Height of a geographic location above a fixed reference point

The elevation of a geographic location is its height above or below a fixed reference point, most commonly a reference geoid, a mathematical model of the Earth's sea level as an equipotential gravitational surface . The term elevation is mainly used when referring to points on the Earth's surface, while altitude or geopotential height is used for points above the surface, such as an aircraft in flight or a spacecraft in orbit, and depth is used for points below the surface.

In aviation, atmospheric sciences and broadcasting, a height above ground level is a height measured with respect to the underlying ground surface. This is as opposed to height above mean sea level, height above ellipsoid, or height above average terrain. In other words, these expressions indicate where the "zero level" or "reference altitude" – the vertical datum – is located.

<span class="mw-page-title-main">Benchmark (surveying)</span> Point with known height used in surveying when levelling

The term benchmark, bench mark, or survey benchmark originates from the chiseled horizontal marks that surveyors made in stone structures, into which an angle iron could be placed to form a "bench" for a leveling rod, thus ensuring that a leveling rod could be accurately repositioned in the same place in the future. These marks were usually indicated with a chiseled arrow below the horizontal line. A benchmark is a type of survey marker.

<span class="mw-page-title-main">Chart datum</span> Level of water from which depths displayed on a nautical chart are measured

A chart datum is the water level surface serving as origin of depths displayed on a nautical chart and for reporting and predicting tide heights. A chart datum is generally derived from some tidal phase, in which case it is also known as a tidal datum. Common chart datums are lowest astronomical tide (LAT) and mean lower low water (MLLW). In non-tidal areas, e.g. the Baltic Sea, mean sea level (MSL) is used. A chart datum is a type of vertical datum and must not be confused with the horizontal datum for the chart.

The orthometric height is the vertical distance H along the plumb line from a point of interest to a reference surface known as the geoid, the vertical datum that approximates mean sea level. Orthometric height is one of the scientific formalizations of a laypersons' "height above sea level", along with other types of heights in Geodesy.

<span class="mw-page-title-main">Australian Height Datum</span> Vertical datum of Australia

The Australian Height Datum was introduced in 1971 as the official vertical datum for Australia, and thereby serves as the benchmark to which all height measurements are referred. The Australian Height Datum is an amalgamation of decades of spirit levelling work conducted by numerous state and territory authorities across the country, and was corrected to align with the mean sea level observations of thirty tide gauges positioned around the entire coastline. While it remains the published vertical datum for all surveying and engineering operations performed throughout Australia, newer technologies have uncovered numerous deficiencies, offsets and distortions within the Australian Height Datum, leading to discussions about defining a new Australian vertical datum.

<span class="mw-page-title-main">National Geodetic Vertical Datum of 1929</span> Vertical datum in the United States

The National Geodetic Vertical Datum of 1929 is the official name since 1973 of the vertical datum established for vertical control surveying in the United States of America by the General Adjustment of 1929. Originally known as Sea Level Datum of 1929, NGVD 29 was determined and published by the United States Coast and Geodetic Survey and used to measure the elevation of a point above and depression below mean sea level (MSL).

<span class="mw-page-title-main">North American Vertical Datum of 1988</span> Vertical datum for orthometric heights

The North American Vertical Datum of 1988 is the vertical datum for orthometric heights established for vertical control surveying in the United States of America based upon the General Adjustment of the North American Datum of 1988.

<span class="mw-page-title-main">Vertical datum</span> Reference surface for vertical positions

In geodesy, surveying, hydrography and navigation, vertical datum or altimetric datum is a reference coordinate surface used for vertical positions, such as the elevations of Earth-bound features and altitudes of satellite orbits and in aviation. In planetary science, vertical datums are also known as zero-elevation surface or zero-level reference.

<i>Normalhöhennull</i> Vertical datum used in Germany

Normalhöhennull or NHN is a vertical datum used in Germany.

<span class="mw-page-title-main">Survey camp</span> Civil engineering training course

Survey Camp is an army tradition that was discontinued in the later part of twentieth century but was reinstated in 2002 across the universities of the world with a whole new structure. It is the civil engineering training course for two weeks usually after completion four semesters of bachelor of technology that consists of 8 days working in the field and 6 days of map preparation in the computer lab. Experts say that survey camp provides necessary foundation for civil engineers. Each day in the course there are at least 8 hours of working in the field. Students are divided into groups and they get out with practising surveyors and use their equipment out in the field. A camp incharge teacher appoints group leaders for each group; the leaders are responsible for all the works of his particular group and the equipment. In the computer lab, students learn applications such as AutoCAD and Carlson Survey. The students use these programs to take data collected from the field to develop topographic maps of the particular area. The basic aim of the survey camp is to know various works carried out in the industrial field by surveying, which includes determining the topography of particular area with the help of survey work, map study and reconnaissance work. The methods used for surveying are traversing, levelling and contouring

This is a glossary of levelling terms. Levelling is a surveying method used to find relative height, one use of which is to ensure ground is level during construction, for example, when excavating to prepare for laying a foundation for a house.

Vertical position or vertical location is a position along a vertical direction above or below a given vertical datum . Vertical distance or vertical separation is the distance between two vertical positions. Many vertical coordinates exist for expressing vertical position: depth, height, altitude, elevation, etc. Points lying on an equigeopotential surface are said to be on the same vertical level, as in a water level.

References

  1. "Reduced Level explanation" (PDF). Retrieved 17 October 2014.
  2. Tides and Currents. http://tidesandcurrents.noaa.gov/datum_options.html
  3. "Reduced Level definition" . Retrieved 17 October 2014.
  4. "Datum of India and Pakistan" . Retrieved 17 October 2014.
  5. "Datum Surface" . Retrieved 17 October 2014.
  6. "Tides and Currents" . Retrieved 17 October 2014.
  7. "GTS benchmarks of India and Pakistan" . Retrieved 15 November 2014.
  8. "Instruments used to determine reduced level" . Retrieved 17 October 2014.
  9. Dr. B.C Punmia and Ashok Kumar Jain. (2014). "Levelling". A text book of Surveying Vol. 1.