Remanufacturing

Last updated

Remanufacturing is "the rebuilding of a product to specifications of the original manufactured product using a combination of reused, repaired and new parts". [1] It requires the repair or replacement of worn out or obsolete components and modules. Parts subject to degradation affecting the performance or the expected life of the whole are replaced. Remanufacturing is a form of a product recovery process that differs from other recovery processes in its completeness: a remanufactured machine should match the same customer expectation as new machines.

Contents

In 1995, the United States Environmental Protection Agency (EPA) implemented the Comprehensive Procurement Guideline [2] (CPG) program to promote waste reduction and resource conservation through the use of materials recovered from solid waste, and to ensure that the materials collected in recycling programs will be used again in the manufacture of new products. The EPA is required to designate products that are or can be made with recovered materials, and to recommend practices for buying these products. Once a product is designated, state and federal procuring agencies are required to purchase it with the highest recovered material content level practicable.

In 2004, the EPA published its third CPG update (CPG IV) which designated seven additional products and revised three existing product designations. One of the new product categories to be added was Rebuilt Vehicular Parts. [3] The EPA defines rebuilt vehicular parts as "vehicle parts that have been re-manufactured, reusing parts in their original form. Rebuilt parts undergo an extensive re-manufacturing and testing process and must meet the same industry specifications for performance as new parts."

In the UK, a market potential of up to £5.6 billion has been identified in remanufacturing, with the benefits said to be improvement to business margins, revenues and security of supply. [4]

Other forms of product recovery

  1. Reuse implies that items are used by a second customer without prior repair operations or as originally designed.
  2. Repair: the process of bringing damaged components back to a functional condition.
  3. Refurbishing/Reconditioning is the process of restoring components to a functional and/or satisfactory state to the original specification, using methods such as resurfacing, repainting, etc.
  4. Recycling is the process of taking a component material and processing it to make the same material or useful degraded material.
  5. Cannibalization (parts)

Many formal definitions of remanufacturing exist in the literature, but the first published report on remanufacturing, by R. Lund (1984), describes remanufacturing as "... an industrial process in which worn-out products are restored to like-new condition. Through a series of industrial processes in a factory environment, a discarded product is completely disassembled. Useable parts are cleaned, refurbished, and put into inventory. Then the product is reassembled from the old parts (and where necessary, new parts) to produce a unit fully equivalent and sometimes superior in performance and expected lifetime to the original new product". [5]

Furthermore, the Automotive Parts Remanufacturers Association (APRA) realized that communication problems can arise when people from different countries with different language skills talk about remanufacturing. Certain terms can have different meanings as definitions between countries and individuals vary. In 2013, APRA was able to solve these communication problems by publishing a common translation list in many different languages in order to unite all those who deal with the automotive industry.

Range of products being remanufactured [6]

Different types of remanufacturing

There are three main types of remanufacturing activities, each with different operational challenges.

  1. Remanufacturing without identity loss With this method, a current machine is built on yesterday's base, receiving all enhancements, expected life and warranty of a new machine. The physical structure (the chassis or frame) is inspected for soundness. The whole product is refurbished and critical modules are overhauled, upgraded or replaced. Any defects in the original design are eliminated. This is the case for customized remanufacturing of machine tools, airplanes, computer mainframes, large medical equipment and other capital goods. Because of its uniqueness, this product recovery is characterized as a project.
  2. Remanufacturing with loss of original product identity With this method, used goods are disassembled into pre-determined components and repaired to stock, ready to be reassembled into a remanufactured product. This is the case when remanufacturing automobile components, photocopiers, toner cartridges, furniture, ready-to-use cameras and personal computers. Once the product is disassembled and the parts are recovered, the process concludes with an operation similar to original manufacturing. Disassembled parts are inventoried, just like purchased parts and made available for final assembly. Remanufacturing with loss of original product identity encompasses some unique challenges in inventory management and disassembly sequence development. Some of the open questions relate to the commonality of parts in products of different generations, the uncertainty in the supply of used products, and their relationship with production planning. The National Center for Remanufacturing and Resource Recovery (NCR3) at Rochester Institute of Technology (NY) is researching remanufacturing processes including testing standards for remanufactured products.
  3. Repetitive remanufacturing without identity loss In this method, there is the additional challenge of scheduling the sequence of dependent processes and identifying the location of inventory buffers. There is a fine line between repetitive remanufacturing without loss of identity and product overhaul. The final output has an as-new appearance and is covered by a warranty comparable to that of a new product.

Remanufacturing by Recoating of Worn Engine Parts

In addition to these is a less significant type of remanufacturing, remanufacturing by recoating of worn engine parts. This type of remanufacturing serves many engine parts and other large and expensive components that become worn after a period of use. An example is the engine block, in particular the cylinder engine bores, which must withstand combustion. Instead of disposing of engine blocks, remanufacturing enables re-use by coating them with plasma transferred wire arc spraying (PTWA). Remanufacturing by recoating of parts is also popular in aviation and with geothermal pipe.

Rebuilding

Rebuilding is an old name for remanufacturing. It is still widely used by automotive industry. For example, the Automotive Parts Remanufacturers Association (APRA), [7] have the new term in their name, but to be safe on their own website use the combined term 'rebuild/remanufacture'.

The term 'rebuilding' is also often used by railway companies; a steam locomotive may be rebuilt with a new boiler or a diesel locomotive may be rebuilt with a new engine. This saves money (by re-using the frame, and some other components, which still have years of useful life) and allows the incorporation of improved technology. For example, a new diesel engine may have lower fuel consumption, reduced exhaust emissions and better reliability. Recent examples include British Rail Class 57 and British Rail Class 43.

Benefits of Engine Remanufacturing

  1. Lower Cost - One of the biggest factors in choosing a remanufactured engine is cost. Remanufactured engines cost up to 50% less than new Tier 4 Final engines, not including associated engineering costs, and offers even greater savings over the purchase of a new piece of equipment. Maintenance on some new Tier 4 Final engines can be costly as well. In addition to being more complex to service, additional costs for after treatment cleaning and DEF fluid can add up quickly. [8]
  2. Less Downtime - Opting to replace existing engines with a new ones typically requires significant engineering time that can render rental equipment out of service for months. The integration and testing process also takes significantly longer with a new Tier 4 Final engine than with remanufactured engines. [8]
  3. Increased Equipment Resale Value - There are two main factors currently making it difficult to sell Tier 4 Final-powered equipment in lesser regulated countries: serviceability and fuel availability. The lack of established service programs for the new technology makes supporting the product difficult. This coupled with high product costs, have companies shying away from Tier 4 Final powered equipment. In addition, many lesser-regulated countries don't have high availability for ultra-low sulphur diesel fuel, which is required by Tier 4 Final engines to operate effectively. Without it, the diesel particulate filter can clog rapidly and cause significant operation issues. [8]
  4. More Sustainable Option - Purchasing remanufactured engines keeps old engine cores and many usable components out of landfills, which can greatly reduce the impact on the environment. According to Perkins Pacific's Andy Machin, approximately 73% of old engines can be salvaged during remanufacturing, keeping millions of pounds of waste out of landfills. New engine production requires all new materials, substantial amounts of energy for the production process and additional transportation costs. By utilizing recycled components, a remanufactured engine typically uses about 80% less energy than new engine production, making it a much greener option. For rental fleet owners, remanufacturing offers the opportunity to expand their sustainability practices while saving money. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Original equipment manufacturer</span> Company that fabricates parts used in another companys products

An original equipment manufacturer (OEM) is generally perceived as a company that produces non-aftermarket parts and equipment that may be marketed by another manufacturer. It is a common industry term recognized and used by many professional organizations such as SAE International, ISO, and others.

<span class="mw-page-title-main">Electrostatic discharge</span> Sudden flow of electric current between 2 electrically charged objects by contact

Electrostatic discharge (ESD) is a sudden and momentary flow of electric current between two electrically charged objects caused by contact, an electrical short or dielectric breakdown. A buildup of static electricity can be caused by tribocharging or by electrostatic induction. The ESD occurs when differently-charged objects are brought close together or when the dielectric between them breaks down, often creating a visible spark.

<span class="mw-page-title-main">Engine tuning</span> Optimisation of engine performance

Engine tuning is the adjustment or modification of the internal combustion engine or Engine Control Unit (ECU) to yield optimal performance and increase the engine's power output, economy, or durability. These goals may be mutually exclusive; an engine may be de-tuned with respect to output power in exchange for better economy or longer engine life due to lessened stress on engine components.

The automotive aftermarket is the secondary parts market of the automotive industry, concerned with the manufacturing, remanufacturing, distribution, retailing, and installation of all vehicle parts, chemicals, equipment, and accessories, after the sale of the automobile by the original equipment manufacturer (OEM) to the consumer. The parts, accessories, etc. for sale may or may not be manufactured by the OEM.

A replacement automobile engine is an engine or a major part of one that is sold individually without any other parts required to make a functional car. These engines are produced either as aftermarket parts or as reproductions of an engine that has gone out of production.

<span class="mw-page-title-main">Mechanic</span> Profession

A mechanic is a skilled tradesperson who uses tools to build, maintain, or repair machinery, especially cars.

<span class="mw-page-title-main">Electronic waste recycling</span> Form of recycling

Electronic waste recycling, electronics recycling ore-waste recycling is the disassembly and separation of components and raw materials of waste electronics; when referring to specific types of e-waste, the terms like computer recycling or mobile phone recycling may be used. Like other waste streams, re-use, donation and repair are common sustainable ways to dispose of IT waste.

<span class="mw-page-title-main">Auto mechanic</span> Occupation

An auto mechanic is a mechanic who services and repairs automobiles, sometimes specializing in one or more automobile brands or sometimes working with any brand. In fixing cars, their main role is to diagnose and repair the problem accurately and quickly. Seasoned auto repair shops start with a (Digital) Inspection to determine the vehicle conditions, independent of the customers concern. Based on the concern, the inspection results and preventative maintenance needs, the mechanic/technician returns the findings to the service advisor who then gets approval for any or all of the proposed work. The approved work will be assigned to the mechanic on a work order. Their work may involve the repair of a specific part or the replacement of one or more parts as assemblies. Basic vehicle maintenance is a fundamental part of a mechanic's work in modern industrialized countries, while in others they are only consulted when a vehicle is already showing signs of malfunction.

<span class="mw-page-title-main">Reuse</span> Using an item again after it has been used, instead of recycling or disposing

Reuse is the action or practice of using an item, whether for its original purpose or to fulfill a different function. It should be distinguished from recycling, which is the breaking down of used items to make raw materials for the manufacture of new products. Reuse – by taking, but not reprocessing, previously used items – helps save time, money, energy and resources. In broader economic terms, it can make quality products available to people and organizations with limited means, while generating jobs and business activity that contribute to the economy.

<span class="mw-page-title-main">Automobile repair shop</span> Repair shop where automobiles are repaired by auto mechanics and electricians

An automobile repair shop is an establishment where automobiles are repaired by auto mechanics and technicians. The customer interface is typically a service advisor, traditionally called a service writer.

Precycling is the practice of reducing waste by attempting to avoid buying items which will generate waste into home or business. The U.S. Environmental Protection Agency (EPA) also cites that precycling is the preferred method of integrated solid waste management because it cuts waste at its source and therefore trash is eliminated before it is created. According to the EPA, precycling is also characterized as a decision-making process on the behalf of the consumer because it involves making informed judgments regarding a product's waste implications. The implications that are taken into consideration by the consumer include: whether a product is reusable, durable, or repairable; made from renewable or non-renewable resources; over-packaged; and whether or not the container is reusable.

<span class="mw-page-title-main">Conservation and restoration of road vehicles</span>

Conservation and restoration of road vehicles is the process of restoring a vehicle back to its original working condition, whether the car is partially scrapped or completely totaled. Automotive restoration can be applied to many different eras of the automobile. Bus preservation groups aim to purchase buses of various eras to restore them to their original operating condition. Buses are often restored to the original authentic livery of their original owner.

<span class="mw-page-title-main">Waste</span> Unwanted or unusable materials

Waste are unwanted or unusable materials. Waste is any substance discarded after primary use, or is worthless, defective and of no use. A by-product, by contrast is a joint product of relatively minor economic value. A waste product may become a by-product, joint product or resource through an invention that raises a waste product's value above zero.

<span class="mw-page-title-main">Parts washer</span>

A parts washer is a piece of equipment used to remove contaminants or debris, such as dirt, grime, carbon, oil, grease, metal chips, cutting fluids, mold release agents, ink, paint, and corrosion from workpieces. Parts washers are used in new manufacturing and remanufacturing processes; they are designed to clean, degrease and dry bulk loads of small or large parts in preparation for assembly, inspection, surface treatment, packaging and distribution. Parts washers may be as simple as the manual "sink-on-a-drum" common to many auto repair shops, or they may be very complex, multi-stage units with pass-through parts handling systems. Parts washers are essential in maintenance, repair and remanufacturing operations as well, from cleaning fasteners, nuts, bolts and screws to diesel engine blocks and related parts, rail bearings, wind turbine gears boxes and automotive assemblies.

<span class="mw-page-title-main">EMD SD32ECO</span> Model of American diesel locomotive

The EMD SD32ECO is a 3,150 hp (2,350 kW) C-C diesel-electric locomotive rebuilt by Electro-Motive Diesel. It is primarily the application of a conversion kit to an existing EMD SD60-type locomotive. This involves replacing the existing 710G3A V16 prime mover with an EPA Tier-II-compliant 710G3B-T2 turbocharged V12 engine, with electronic fuel injection. Many of the donor SD60's major components and subsystems are recycled, and are recertified as equal to new. However, the locomotive's control system is all new.

Break-in or breaking in, also known as run-in or running in, is the procedure of conditioning a new piece of equipment by giving it an initial period of running, usually under light load, but sometimes under heavy load or normal load. It is generally a process of moving parts wearing against each other to produce the last small bit of size and shape adjustment that will settle them into a stable relationship for the rest of their working life.

<span class="mw-page-title-main">Motor & Equipment Manufacturers Association</span>

The Motor & Equipment Manufacturers Association (MEMA) was founded in 1904. MEMA represents more than 1,000 companies that manufacture motor vehicle components and systems for the original equipment and aftermarket segments of the light vehicle and heavy-duty motor vehicle manufacturing industry in the United States. Motor vehicle component manufacturers are the largest employer of manufacturing jobs in the U.S., contributing nearly 3 percent of the U.S. gross domestic product. Motor vehicle parts suppliers generate a total direct and indirect employment impact of 4.26 million jobs, up nearly 18 percent since 2012.

<span class="mw-page-title-main">Hatz</span>

Motorenfabrik Hatz is a German manufacturer of diesel engines, based in Ruhstorf an der Rott, Lower Bavaria, Germany. Especially known for its small, lightweight and robust engines, the engines are mainly used in all kinds of small construction machinery, for generators or pumps

Right to repair is a legal right for owners of devices and equipment to freely modify and repair products such as automobiles, electronics, and farm equipment. This right is framed in opposition to restrictions such as requirements to use only the manufacturer's maintenance services, restrictions on access to tools and components, and software barriers.

References

  1. Johnson, M. R. & McCarthy I. P. (2014) Product Recovery Decisions within the Context of Extended Producer Responsibility. Journal of Engineering and Technology Management 34, 9-28
  2. "Comprehensive Procurement Guidelines - Conservation Tools- US EPA". 15 November 2016.
  3. "Rebuilt Vehicular Parts". United States Environmental Protection Agency . Archived from the original on January 3, 2013.
  4. "Supply chains are shaping the business models of the future", The Carbon Trust , 17 December 2014. Retrieved on 20 January 2015.
  5. "Remanufacturing". Lund, Robert T., Technology review, v 87, n 2, p 19-23, 28-29, Feb-Mar 1984
  6. "The Reman Institute-Home".
  7. "APRA". apra.org.
  8. 1 2 3 4 "4 Reasons Why Rental Fleet Owners Should Take Advantage of Engine Remanufacturing" . Retrieved 2016-08-08.