Renewable energy in Ethiopia

Last updated
Dam of a hydroelectric power plant near the Blue Nile Falls ET Bahir Dar asv2018-02 img14 Tis Issat.jpg
Dam of a hydroelectric power plant near the Blue Nile Falls

Ethiopia generates most of its electricity from renewable energy, mainly hydropower.

Contents

The country is strategically expanding its energy sector, aiming for a more diverse and resilient mix. The country's current energy production is heavily reliant on hydropower, which constitutes about 90% of its energy production but is vulnerable to climate-induced droughts. [1] To address this, the government is implementing key hydropower and geothermal projects. [2]

Electricity supply

Solar potential SolarGIS-Solar-map-Ethiopia-en.png
Solar potential

In 2011, over 96% of Ethiopia's electricity was from hydropower. [3] The country began a large program to expand electricity supply in the 2010s from 2,000 MW to 10,000 MW. This was to be done mainly with renewable sources. Wind and geothermal were included to offset seasonal differences in water levels. Ethiopia plans to export electricity to neighboring countries but transmission lines will need to be upgraded and expanded.

Most of the energy needs of Ethiopia are filled by biofuels for cooking, heating, and off-grid lighting. Petroleum, including gasoline, diesel and kerosene supply less than 7% of the country's energy supply. [3] Solar photovoltaics is being promoted to replace fuel-based lighting and off-grid electrical supply with a solar panel assembly plant opening in Addis Ababa in early 2013. The majority of the Ethiopia's population live in rural areas and very few have access to electricity.

Ethiopia is planning for a carbon-neutral status by 2025. [4]

This aim was set through their ambitious three-stage Growth and Transformation Plan, Ethiopia seeks to transform itself into a modern economy by 2025. According to the Ministry of Water and Energy, as of 2018, only 23% of the national populace has access to grid electricity. That figure falls even further to 10% when moving to rural areas – a figure that's smaller than the 17% average found across the rest of Africa. [5] Drought frequency, flooding, poor land management techniques, and a rapidly growing population all have increased the situations direness. [6] As of 2018, Ethiopia had launched the National Electrification Program which aimed for 65% of the population to be grid-connected by 2025. [7]

Hydropower

Hydropower Dams built in Ethiopia provided over 1,500 MW of capacity by 2010. The four largest dams were built between 2004 and 2010. Gilgel Gibe III added 1,870 MW in 2016.

The Grand Ethiopia Renaissance Dam (GERD), a key element of the country's energy expansion strategy, is expected to significantly increase the nation's energy capacity. With a planned capacity of 5,150 MW, GERD was 90% complete as of March 2023 and began producing 375 MW from one turbine in February 2022. This project is not solely focused on energy generation; it is also regarded as a potential contributor to industrialization and economic growth, with possibilities for electricity exports. Complementing GERD is the Koysha Hydropower Dam, which, once operational, will be the second-largest dam in Ethiopia with a capacity of 2,170 MW. [2]

Over 70% of the freshwater resources that Ethiopia has access to can be found at the Blue Nile River Basin. Here, three river systems, the Abbay (44%), Akobo River (20%), and Tekezé (6%) provide the country with vital water resources. [8] Ethiopia's government is planning on tapping into this technology five-fold in the coming years. [9]

Egypt has expressed concerns that their water rights are being violated by these upstream dams but Ethiopia has no water treaty with Egypt.

Wind power

Ethiopia plans 800 MW of wind power. [10] As the dry season is also the windy season, wind power is a good complement to hydropower. Ethiopia has benefitted from the creation and sustainment of two large wind power systems. In October 2013 the largest wind farm on the continent, the Adama plants, started capturing energy in Ethiopia. The Adama 1 plant has a capacity to produce 51 MW while the Adama 2 plant has a capacity to generate 51 MW. [11] Another farm of note is the Ashegoda wind farm and the Ashegoda Expansion wind farm which together produce roughly 120 MW of electricity.[ citation needed ] The Chinese firm Hydrochina estimated total wind power potential to be as high as 1.3 million MW. [12]

Geothermal

Ethiopia is planning to build geothermal plants to offset restraints on power production by hydroplants due to seasonal water variation. American-Icelandic company Reykjavik Geothermal has an agreement to develop a 1000 MW geothermal farm. [13] The first 500 MW would be completed by 2018.

As part of Ethiopia’s strategic expansion of its energy sector, the country is also developing geothermal projects in Oromia, specifically in Corbetti and Tulu Moye. These projects, revised in 2017 to a capacity of 150 MW each, were finalized in March 2020. Representing an investment of approximately $1.2 billion, the geothermal projects demonstrate Ethiopia's commitment to renewable energy development. They contribute not only to the country's energy sustainability but also open opportunities for future investments, particularly from U.S. Independent Power Producers (IPP). [2]

A study funded by the Climate and Development Knowledge Network found that the Ethiopian approach to geothermal development puts little focus on involving the private sector in risk mitigation and fails to build the capacity needed for flows of significant private sector finance. The study found that international, multilateral and bilateral institutions should:

Biofuels

Over 91% of the primary energy supply in Ethiopia is coming from biomass as of 2015 (45.8 out of 49.9 MTOE). Additionally, in the final sectors of Ethiopian society more than 90% of the energy is coming from biomass and of that 99% is consumed by direct residencies. [15] Often coming in the form of animal product and forestry, natural resources, biomass as a renewable energy source is utilized extensively by direct residences and the final sector. Over time Ethiopia's forests have shrunk from covering 35% of the country at the turn of the twentieth century to under 15% currently. This loss can primarily be attributed to population growth. The country's developed a strategy it calls the Woody Biomass Inventory and Strategic Planning Project to attempt to combat the noticeable degradation of vegetation cover and address resource shortages for future industrial and energy needs. [16] As of 2008, 85% of Ethiopia's population almost exclusively relied on two types of biomass fuels for cooking: woody biomass and dung. [17] Such a reliance on biomass backed fuels has been linked to the over 72,400 indoor air pollution caused deaths that occur annually in Ethiopia. [18] The government plans to distribute 9 million more efficient stoves by 2015 to reduce wood use while improving air quality and lowering CO2 emissions. [4]

Exports

As Ethiopia produces more power than it consumes, it has become a regional power exporter. In 2015, it sells electricity to Kenya, Sudan and Djibouti and has future contracts for power sales to Tanzania, Rwanda, South Sudan and Yemen. [19] The Eastern African Power Pool will expand transmission lines to make this possible. Exports to Egypt and Sudan are possible after the completion of the Grand Ethiopian Renaissance Dam. [20]

See also

Related Research Articles

<span class="mw-page-title-main">Renewable energy commercialization</span> Deployment of technologies harnessing easily replenished natural resources

Renewable energy commercialization involves the deployment of three generations of renewable energy technologies dating back more than 100 years. First-generation technologies, which are already mature and economically competitive, include biomass, hydroelectricity, geothermal power and heat. Second-generation technologies are market-ready and are being deployed at the present time; they include solar heating, photovoltaics, wind power, solar thermal power stations, and modern forms of bioenergy. Third-generation technologies require continued R&D efforts in order to make large contributions on a global scale and include advanced biomass gasification, hot-dry-rock geothermal power, and ocean energy. In 2019, nearly 75% of new installed electricity generation capacity used renewable energy and the International Energy Agency (IEA) has predicted that by 2025, renewable capacity will meet 35% of global power generation.

For solar power, South Asia has the ideal combination of both high solar insolation and a high density of potential customers.

<span class="mw-page-title-main">Renewable energy in Honduras</span> Overview of the use of renewable energy in Honduras

In Honduras, there is an important potential of untapped indigenous renewable energy resources. Due to the variability of high oil prices and declining renewable infrastructure costs, such resources could be developed at competitive prices.

<span class="mw-page-title-main">Renewable energy in China</span>

China is the world's leader in electricity production from renewable energy sources, with over triple the generation of the second-ranking country, the United States. China's renewable energy sector is growing faster than its fossil fuels and nuclear power capacity, and is expected to contribute 43 per cent of global renewable capacity growth. China's total renewable energy capacity exceeded 1,000 GW in 2021, accounting for 43.5 per cent of the country's total power generation capacity, 10.2 percentage points higher than in 2015. The country aims to have 80 per cent of its total energy mix come from non-fossil fuel sources by 2060, and achieve a combined 1,200 GW of solar and wind capacity by 2030. In 2023, it was reported that China was on track to reach 1,371 gigawatts of wind and solar by 2025, five years ahead of target due to new renewables installations breaking records.

Energy in Ethiopia includes energy and electricity production, consumption, transport, exportation, and importation in the country of Ethiopia.

<span class="mw-page-title-main">Enel Green Power</span>

Enel Green Power S.p.A. is an Italian multinational renewable energy corporation, headquartered in Rome. The company was formed as a subsidiary of the power generation firm Enel in December 2008. It has operations in five continents generating energy from solar, geothermal, wind and hydropower sources. As of 2022, it manages a capacity of 60,9 GW and has over 1200 plants worldwide.

Renewable energy in Russia mainly consists of hydroelectric energy. Russia is rich not only in oil, gas and coal, but also in wind, hydro, geothermal, biomass and solar energy – the resources of renewable energy. Practically all regions have at least one or two forms of renewable energy that are commercially exploitable, while some regions are rich in all forms of renewable energy resources. However, fossil fuels dominate Russia’s current energy mix, while its abundant and diverse renewable energy resources play little role.

Despite its high potential for wind energy generation, wind power in Kenya currently contributes only about 16 percent of the country's total electrical power. However, its share in energy production is increasing. Kenya Vision 2030 aims to generate 2,036 MW of wind power by 2030. To accomplish this goal, Kenya is developing numerous wind power generation centers and continues to rely on the nation's three major wind farms: the Lake Turkana Wind Power Station, the Kipeto Wind Power Station, and the Ngong Hills Wind Farm. While these wind power stations are beneficial to help offset fossil fuel usage and increase overall energy supply reliability in Kenya, project developments have also negatively impacted some indigenous communities and the parts of the environment surrounding the wind farms.

<span class="mw-page-title-main">Renewable energy in Kenya</span>

Most of Kenya's electricity is generated by renewable energy sources. Access to reliable, affordable, and sustainable energy is one of the 17 main goals of the United Nations’ Sustainable Development Goals. Development of the energy sector is also critical to help Kenya achieve the goals in Kenya Vision 2030 to become a newly industrializing, middle-income country. With an installed power capacity of 2,819 MW, Kenya currently generates 826 MW hydroelectric power, 828 geothermal power, 749 MW thermal power, 331 MW wind power, and the rest from solar and biomass sources. Kenya is the largest geothermal energy producer in Africa and also has the largest wind farm on the continent. In March 2011, Kenya opened Africa's first carbon exchange to promote investments in renewable energy projects. Kenya has also been selected as a pilot country under the Scaling-Up Renewable Energy Programmes in Low Income Countries Programme to increase deployment of renewable energy solutions in low-income countries. Despite significant strides in renewable energy development, about a quarter of the Kenyan population still lacks access to electricity, necessitating policy changes to diversify the energy generation mix and promote public-private partnerships for financing renewable energy projects.

<span class="mw-page-title-main">Renewable energy in Albania</span>

Renewable energy in Albania includes biomass, geothermal, hydropower, solar, and wind energy. Albania relies mostly on hydroelectric resources, therefore, it has difficulties when water levels are low. The climate in Albania is Mediterranean, so it possesses considerable potential for solar energy production. Mountain elevations provide good areas for wind projects. There is also potentially usable geothermal energy because Albania has natural wells.

Renewable energy in Bhutan is the use of renewable energy for electricity generation in Bhutan. The renewable energy sources include hydropower.

Myanmar had a total primary energy supply (TPES) of 16.57 Mtoe in 2013. Electricity consumption was 8.71 TWh. 65% of the primary energy supply consists of biomass energy, used almost exclusively (97%) in the residential sector. Myanmar’s energy consumption per capita is one of the lowest in Southeast Asia due to the low electrification rate and a widespread poverty. An estimated 65% of the population is not connected to the national grid. Energy consumption is growing rapidly, however, with an average annual growth rate of 3.3% from 2000 to 2007.

In 2013, renewable energy provided 26.44% of the total electricity in the Philippines and 19,903 gigawatt-hours (GWh) of electrical energy out of a total demand of 75,266 gigawatt-hours. The Philippines is a net importer of fossil fuels. For the sake of energy security, there is momentum to develop renewable energy sources. The types available include hydropower, geothermal power, wind power, solar power and biomass power. The government of the Philippines has legislated a number of policies in order to increase the use of renewable energy by the country.

There is enormous potential for renewable energy in Kazakhstan, particularly from wind and small hydropower plants. The Republic of Kazakhstan has the potential to generate 10 times as much power as it currently needs from wind energy alone. But renewable energy accounts for just 0.6 percent of all power installations. Of that, 95 percent comes from small hydropower projects. The main barriers to investment in renewable energy are relatively high financing costs and an absence of uniform feed-in tariffs for electricity from renewable sources. The amount and duration of renewable energy feed-in tariffs are separately evaluated for each project, based on feasibility studies and project-specific generation costs. Power from wind, solar, biomass and water up to 35 MW, plus geothermal sources, are eligible for the tariff and transmission companies are required to purchase the energy of renewable energy producers. An amendment that introduces and clarifies technology-specific tariffs is now being prepared. It is expected to be adopted by Parliament by the end of 2014. In addition, the World Bank's Ease of Doing Business indicator shows the country to be relatively investor-friendly, ranking it in 10th position for investor protection.

<span class="mw-page-title-main">Renewable energy in South Africa</span>

Renewable energy in South Africa is energy generated in South Africa from renewable resources, those that naturally replenish themselves—such as sunlight, wind, tides, waves, rain, biomass, and geothermal heat. Renewable energy focuses on four core areas: electricity generation, air and water heating/cooling, transportation, and rural energy services. The energy sector in South Africa is an important component of global energy regimes due to the country's innovation and advances in renewable energy. South Africa's greenhouse gas (GHG) emissions is ranked as moderate and its per capita emission rate is higher than the global average. Energy demand within the country is expected to rise steadily and double by 2025.

Vietnam utilizes four main sources of renewable energy: hydroelectricity, wind power, solar power and biomass. At the end of 2018, hydropower was the largest source of renewable energy, contributing about 40% to the total national electricity capacity. In 2020, wind and solar had a combined share of 10% of the country's electrical generation, already meeting the government's 2030 goal, suggesting future displacement of growth of coal capacity. By the end of 2020, the total installed capacity of solar and wind power had reached over 17 GW. Over 25% of total power capacity is from variable renewable energy sources. The commercial biomass electricity generation is currently slow and limited to valorizing bagasse only, but the stream of forest products, agricultural and municipal waste is increasing. The government is studying a renewable portfolio standard that could promote this energy source.

<span class="mw-page-title-main">Renewable energy in Austria</span>

By the end of 2016 Austria already fulfilled their EU Renewables Directive goal for the year 2020. By 2016 renewable energies accounted to 33.5% of the final energy consumption in all sectors. The renewable energy sector is also accountable for hosting 41,591 jobs and creating a revenue of 7,219 million euros in 2016.

<span class="mw-page-title-main">Electricity sector in Ethiopia</span> Overview of electricity in Ethiopia

Ethiopia has abundant resources that can generate 60,000 TWh electricity from hydroelectric, wind, solar and geothermal sources in the next 10 years. The electrification process causes GDP growth and high public demand for 110 million of its population. On total, Ethiopia produces 14 TWh from all facilities and exports other resources like natural gas or crude oil.

References

  1. "Ethiopia Renewable Energy". International Trade Administration, U.S. Department of Commerce. 2022-06-28.
  2. 1 2 3 "Ethiopia - Energy". International Trade Administration, U.S. Department of Commerce. 2024-01-18.
  3. 1 2 Solar energy vision for Ethiopia Opportunities for creating a photovoltaic industry in Ethiopia, Ethio Resource Group, 2012
  4. 1 2 Ethiopia's Climate-Resilient Green Economy Strategy, Government of Ethiopia, 2011
  5. Gupta, Dawit (2018). "Determinants of household adoption of solar energy technology in rural Ethiopia". Journal of Cleaner Production. 204: 193–204. doi:10.1016/j.jclepro.2018.09.016. S2CID   158535240.
  6. Simane, Belay (2016). "Review of Climate Change and Health in Ethiopia: Status and Gap Aalysis". Ethiopian J Health. 30: 28–41.
  7. "Ethiopia".
  8. Wondimagegnehu (2015). "Evaluation of Climate Change Impact on Blue Nile Basin Cascade Reservoir Operation - case study of proposed Reservoirs in the Main Blue Nile River Basin Ethiopia". Proceedings of the International Association of Hydrological Sciences. 366: 133. Bibcode:2015PIAHS.366..133W. doi: 10.5194/piahs-366-133-2015 .
  9. van der Zwaan, Bob (2018). "Prospects for Hydropower in Ethiopia: An energy-water nexus analysis" (PDF). Energy Strategy Reviews. 19: 19–30. doi: 10.1016/j.esr.2017.11.001 .
  10. Kieron Monks (20 December 2016). "Ethiopia becomes the wind capital of Africa". CNN.
  11. Bekele, Getachew (2012). "Investigation of Wind Farm Interaction with Ethiopian Electric Power Corporation's Grid". Energy Procedia. 14: 1766–1773. doi: 10.1016/j.egypro.2011.12.1165 .
  12. Smith, David (2013). "Ethiopia Opens Africa's biggest windfarm". The Guardian.
  13. Ethiopia signs $4 billion geothermal deal, AFP, Oct 23, 2013
  14. "WORKING PAPER: Innovative risk finance solutions - Insights for geothermal power development in Kenya and Ethiopia - Climate and Development Knowledge Network". Climate and Development Knowledge Network. Retrieved 2017-03-10.
  15. Kim, Sudak (2018). "Reducing Biomass Utilization in the Ethiopia Energy System: A National Modeling Analysis". Energies. 11 (7): 1745. doi: 10.3390/en11071745 .
  16. Woody Biomass Inventory and Strategic Planning Project (WBISPP) (1995). "A Strategic Plan for the Sustainable Development of Woody Biomass Resources". Ethiopian Institute of Agricultural Research. 3.
  17. Mekonnen, Alemu; Köhlin, Gunnar (2008). "Biomass Fuel Consumption and Dung Use as Manure" (PDF). 1. Environment for Development.{{cite journal}}: Cite journal requires |journal= (help)
  18. Wassie, Yibeltal (2019). "Potential Environmental Impacts of small-scale renewable energy technologies in East Africa: A systematic review of the evidence". Renewable and Sustainable Energy Reviews. 111: 377–391. doi: 10.1016/j.rser.2019.05.037 .
  19. Ethiopia to Export Renewable Energy, Reuters, Bethelhem Lemma, 14 May 2015
  20. Ethiopia to step up as regional clean power exporter, World Bulletin, 13 May 2015