Replica trick

Last updated

In the statistical physics of spin glasses and other systems with quenched disorder, the replica trick is a mathematical technique based on the application of the formula:

Contents

or:

where is most commonly the partition function, or a similar thermodynamic function.

It is typically used to simplify the calculation of , the expected value of , reducing the problem to calculating the disorder average where is assumed to be an integer. This is physically equivalent to averaging over copies or replicas of the system, hence the name.

The crux of the replica trick is that while the disorder averaging is done assuming to be an integer, to recover the disorder-averaged logarithm one must send continuously to zero. This apparent contradiction at the heart of the replica trick has never been formally resolved, however in all cases where the replica method can be compared with other exact solutions, the methods lead to the same results. (A natural sufficient rigorous proof that the replica trick works would be to check that the assumptions of Carlson's theorem hold, especially that the ratio is of exponential type less than π.)

It is occasionally necessary to require the additional property of replica symmetry breaking (RSB) in order to obtain physical results, which is associated with the breakdown of ergodicity.

General formulation

It is generally used for computations involving analytic functions (can be expanded in power series).

Expand using its power series: into powers of or in other words replicas of , and perform the same computation which is to be done on , using the powers of .

A particular case which is of great use in physics is in averaging the thermodynamic free energy,

over values of with a certain probability distribution, typically Gaussian. [1]

The partition function is then given by

Notice that if we were calculating just (or more generally, any power of ) and not its logarithm which we wanted to average, the resulting integral (assuming a Gaussian distribution) is just

a standard Gaussian integral which can be easily computed (e.g. completing the square).

To calculate the free energy, we use the replica trick:

which reduces the complicated task of averaging the logarithm to solving a relatively simple Gaussian integral, provided is an integer. [2]

The replica trick postulates that if can be calculated for all positive integers then this may be sufficient to allow the limiting behavior as to be calculated.

Clearly, such an argument poses many mathematical questions, and the resulting formalism for performing the limit typically introduces many subtleties. [3]

When using mean-field theory to perform one's calculations, taking this limit often requires introducing extra order parameters, a property known as "replica symmetry breaking" which is closely related to ergodicity breaking and slow dynamics within disorder systems.

Physical applications

The replica trick is used in determining ground states of statistical mechanical systems, in the mean-field approximation. Typically, for systems in which the determination of ground state is easy, one can analyze fluctuations near the ground state. Otherwise one uses the replica method. [papers on spin glasses 1] An example is the case of a quenched disorder in a system like a spin glass with different types of magnetic links between spins, leading to many different configurations of spins having the same energy.

In the statistical physics of systems with quenched disorder, any two states with the same realization of the disorder (or in case of spin glasses, with the same distribution of ferromagnetic and antiferromagnetic bonds) are called replicas of each other. [papers on spin glasses 2] For systems with quenched disorder, one typically expects that macroscopic quantities will be self-averaging, whereby any macroscopic quantity for a specific realization of the disorder will be indistinguishable from the same quantity calculated by averaging over all possible realizations of the disorder. Introducing replicas allows one to perform this average over different disorder realizations.

In the case of a spin glass, we expect the free energy per spin (or any self averaging quantity) in the thermodynamic limit to be independent of the particular values of ferromagnetic and antiferromagnetic couplings between individual sites, across the lattice. So, we explicitly find the free energy as a function of the disorder parameter (in this case, parameters of the distribution of ferromagnetic and antiferromagnetic bonds) and average the free energy over all realizations of the disorder (all values of the coupling between sites, each with its corresponding probability, given by the distribution function). As free energy takes the form:

where describes the disorder (for spin glasses, it describes the nature of magnetic interaction between each of the individual sites and ) and we are taking the average over all values of the couplings described in , weighted with a given distribution. To perform the averaging over the logarithm function, the replica trick comes in handy, in replacing the logarithm with its limit form mentioned above. In this case, the quantity represents the joint partition function of identical systems.

REM: the easiest replica problem

The random energy model (REM) is one of the simplest models of statistical mechanics of disordered systems, and probably the simplest model to show the meaning and power of the replica trick to the level 1 of replica symmetry breaking. The model is especially suitable for this introduction because an exact result by a different procedure is known, and the replica trick can be proved to work by crosschecking of results.

See also

The cavity method is an alternative method, often of simpler use than the replica method, for studying disordered mean-field problems. It has been devised to deal with models on locally tree-like graphs.

Another alternative method is the supersymmetric method. The use of the supersymmetry method provides a mathematical rigorous alternative to the replica trick, but only in non-interacting systems. See for example the book: [other approaches 1]

Also, it has been demonstrated [other approaches 2] that the Keldysh technique provides a viable alternative to the replica approach.

Remarks

    The first of the above identities is easily understood via Taylor expansion:

    For the second identity, one simply uses the definition of the derivative

    Related Research Articles

    <span class="mw-page-title-main">Exponential function</span> Mathematical function, denoted exp(x) or e^x

    The exponential function is a mathematical function denoted by or . Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the operation of taking powers of a number, but various modern definitions allow it to be rigorously extended to all real arguments , including irrational numbers. Its ubiquitous occurrence in pure and applied mathematics led mathematician Walter Rudin to consider the exponential function to be "the most important function in mathematics".

    <span class="mw-page-title-main">Normal distribution</span> Probability distribution

    In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is

    <span class="mw-page-title-main">Natural logarithm</span> Logarithm to the base of the mathematical constant e

    The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718281828459. The natural logarithm of x is generally written as ln x, logex, or sometimes, if the base e is implicit, simply log x. Parentheses are sometimes added for clarity, giving ln(x), loge(x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.

    <span class="mw-page-title-main">Exponential distribution</span> Probability distribution

    In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time between production errors, or length along a roll of fabric in the weaving manufacturing process. It is a particular case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point processes it is found in various other contexts.

    <span class="mw-page-title-main">Multivariate normal distribution</span> Generalization of the one-dimensional normal distribution to higher dimensions

    In probability theory and statistics, the multivariate normal distribution, multivariate Gaussian distribution, or joint normal distribution is a generalization of the one-dimensional (univariate) normal distribution to higher dimensions. One definition is that a random vector is said to be k-variate normally distributed if every linear combination of its k components has a univariate normal distribution. Its importance derives mainly from the multivariate central limit theorem. The multivariate normal distribution is often used to describe, at least approximately, any set of (possibly) correlated real-valued random variables each of which clusters around a mean value.

    <span class="mw-page-title-main">Spin glass</span> Disordered magnetic state

    In condensed matter physics, a spin glass is a magnetic state characterized by randomness, besides cooperative behavior in freezing of spins at a temperature called 'freezing temperature' Tf. In ferromagnetic solids, component atoms' magnetic spins all align in the same direction. Spin glass when contrasted with a ferromagnet is defined as "disordered" magnetic state in which spins are aligned randomly or without a regular pattern and the couplings too are random.

    <span class="mw-page-title-main">Law of large numbers</span> Averages of repeated trials converge to the expected value

    In probability theory, the law of large numbers (LLN) is a mathematical theorem that states that the average of the results obtained from a large number of independent and identical random samples converges to the true value, if it exists. More formally, the LLN states that given a sample of independent and identically distributed values, the sample mean converges to the true mean.

    <span class="mw-page-title-main">Complex conjugate</span> Fundamental operation on complex numbers

    In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if and are real numbers then the complex conjugate of is The complex conjugate of is often denoted as or .

    The Ising model, named after the physicists Ernst Ising and Wilhelm Lenz, is a mathematical model of ferromagnetism in statistical mechanics. The model consists of discrete variables that represent magnetic dipole moments of atomic "spins" that can be in one of two states. The spins are arranged in a graph, usually a lattice, allowing each spin to interact with its neighbors. Neighboring spins that agree have a lower energy than those that disagree; the system tends to the lowest energy but heat disturbs this tendency, thus creating the possibility of different structural phases. The model allows the identification of phase transitions as a simplified model of reality. The two-dimensional square-lattice Ising model is one of the simplest statistical models to show a phase transition.

    In mathematics, the Hessian matrix, Hessian or Hesse matrix is a square matrix of second-order partial derivatives of a scalar-valued function, or scalar field. It describes the local curvature of a function of many variables. The Hessian matrix was developed in the 19th century by the German mathematician Ludwig Otto Hesse and later named after him. Hesse originally used the term "functional determinants". The Hessian is sometimes denoted by H or, ambiguously, by ∇2.

    In signal processing, independent component analysis (ICA) is a computational method for separating a multivariate signal into additive subcomponents. This is done by assuming that at most one subcomponent is Gaussian and that the subcomponents are statistically independent from each other. ICA is a special case of blind source separation. A common example application is the "cocktail party problem" of listening in on one person's speech in a noisy room.

    In physics, the terms order and disorder designate the presence or absence of some symmetry or correlation in a many-particle system.

    The Green–Kubo relations give the exact mathematical expression for a transport coefficients in terms of the integral of the equilibrium time correlation function of the time derivative of a corresponding microscopic variable :

    von Mises distribution Probability distribution on the circle

    In probability theory and directional statistics, the von Mises distribution is a continuous probability distribution on the circle. It is a close approximation to the wrapped normal distribution, which is the circular analogue of the normal distribution. A freely diffusing angle on a circle is a wrapped normally distributed random variable with an unwrapped variance that grows linearly in time. On the other hand, the von Mises distribution is the stationary distribution of a drift and diffusion process on the circle in a harmonic potential, i.e. with a preferred orientation. The von Mises distribution is the maximum entropy distribution for circular data when the real and imaginary parts of the first circular moment are specified. The von Mises distribution is a special case of the von Mises–Fisher distribution on the N-dimensional sphere.

    In the statistical physics of disordered systems, the random energy model is a toy model of a system with quenched disorder, such as a spin glass, having a first-order phase transition. It concerns the statistics of a collection of spins so that the number of possible states for the system is . The energies of such states are independent and identically distributed Gaussian random variables with zero mean and a variance of . Many properties of this model can be computed exactly. Its simplicity makes this model suitable for pedagogical introduction of concepts like quenched disorder and replica symmetry.

    This is a summary of differentiation rules, that is, rules for computing the derivative of a function in calculus.

    <span class="mw-page-title-main">UNIQUAC</span> Model of phase equilibrium in statistical thermodynamics

    In statistical thermodynamics, UNIQUAC is an activity coefficient model used in description of phase equilibria. The model is a so-called lattice model and has been derived from a first order approximation of interacting molecule surfaces. The model is, however, not fully thermodynamically consistent due to its two-liquid mixture approach. In this approach the local concentration around one central molecule is assumed to be independent from the local composition around another type of molecule.

    In probability theory and directional statistics, a circular uniform distribution is a probability distribution on the unit circle whose density is uniform for all angles.

    In mathematics, in the field of complex analysis, a Nevanlinna function is a complex function which is an analytic function on the open upper half-plane and has non-negative imaginary part. A Nevanlinna function maps the upper half-plane to itself or to a real constant, but is not necessarily injective or surjective. Functions with this property are sometimes also known as Herglotz, Pick or R functions.

    A dipole glass is an analog of a glass where the dipoles are frozen below a given freezing temperature Tf introducing randomness thus resulting in a lack of long-range ferroelectric order. A dipole glass is very similar to the concept of a spin glass where the atomic spins don't all align in the same direction and thus result in a net-zero magnetization. The randomness of dipoles in a dipole glass creates local fields resulting in short-range order but no long-range order.

    References

    Papers on Spin Glasses

    1. Parisi, Giorgio (17 January 1997). "On the replica approach to spin glasses".{{cite journal}}: Cite journal requires |journal= (help)
    2. Tommaso Castellani, Andrea Cavagna (May 2005). "Spin-glass theory for pedestrians". Journal of Statistical Mechanics: Theory and Experiment. 2005 (5): P05012. arXiv: cond-mat/0505032 . Bibcode:2005JSMTE..05..012C. doi:10.1088/1742-5468/2005/05/P05012. S2CID   118903982.

    Books on Spin Glasses

      References to other approaches

      1. Supersymmetry in Disorder and Chaos, Konstantin Efetov, Cambridge university press, 1997.
      2. A. Kamenev and A. Andreev, cond-mat/9810191; C. Chamon, A. W. W. Ludwig, and C. Nayak, cond-mat/9810282.
      1. Nishimori, Hidetoshi (2001). Statistical physics of spin glasses and information processing : an introduction. Oxford [u.a.]: Oxford Univ. Press. ISBN   0-19-850940-5.See page 13, Chapter 2.
      2. Hertz, John (March–April 1998). "Spin Glass Physics".{{cite journal}}: Cite journal requires |journal= (help)
      3. Mezard, M; Parisi, G; Virasoro, M (1986-11-01). Spin Glass Theory and Beyond. World Scientific Lecture Notes in Physics. Vol. 9. WORLD SCIENTIFIC. doi:10.1142/0271. ISBN   9789971501167.