Rhinarium

Last updated
The rhinarium of a cat. Cat rhinarium.JPG
The rhinarium of a cat.
A dog's rhinarium with philtrum
and conspicuous crenellations Canine-nose.jpg
A dog's rhinarium with philtrum
and conspicuous crenellations

The rhinarium (Neo-Latin, "belonging to the nose"; pl.: rhinaria) [1] is the furless skin surface surrounding the external openings of the nostrils in many mammals. Commonly it is referred to as the tip of the snout , and breeders of cats and dogs sometimes use the term nose leather. Informally, it may be called a "truffle", "wet snout," or "wet nose” because its surface is moist in some species: for example, healthy dogs and cats. [2]

Contents

In many species, the rhinarium has a mid-line groove (cleft) the philtrum  and a wrinkled (crenellated) surface. [3] The rhinarium is a separate sense organ: it is a touch-based chemosensory organ that connects with a well-developed vomeronasal organ (VNO). The rhinarium is used to touch a scent-marked object containing pheromones (usually large, non-volatile molecules), and transfer these pheromone molecules down the philtrum to the VNO via the nasopalatine ducts that travel through the incisive foramen of the hard palate. [4] It also acts as a wind-direction detector: cold receptors in the skin of the rhinarium detect the orientation where evaporative cooling is highest, as determined by the wind direction.

The study of the rhinarium's structure and associated functions has proven of considerable importance in the fields of mammalian evolution and taxonomy. [5] For example, primates are phylogenetically divided into those, such as lemurs, with the primitive rhinarium (Strepsirrhini) and the dry-nosed primates (Haplorhini, including apes and thus humans).

In an analogous way entirely unrelated to vertebrate morphology the term rhinarium is sometimes applied to chemosensory structures in invertebrates. For example, microscopic sensilla in the form of flattened sense organs on the antennae of aphids are referred to as rhinaria. [6]

Morphology

Derivation

Morphologically, the rhinarium belongs to the olfactory system, but which part of the system it derives from is open to debate. One possibility is the main olfactory system, which captures media-borne odors; another is the "second nose," the accessory olfactory system, which samples chemicals dissolved in fluids. Arguments supporting the former position consider the rhinarium "an outward extension of the olfactory ... skin that covers the nasal passages, [which] contains nerve receptors for smell and touch." [2] If that interpretation is correct, and the rhinarium is an extension of the olfactory epithelium lining the nasal passages, then it derives from the main system. [7]

But one opposing view traces a path from the philtrum over a notch in the upper lip, through a gap between the first incisors and premaxillae, along a "midline palatal groove" to "a canal that connects with the duct of the vomeronasal organ," suggesting that the rhinarium belongs to the accessory system. [8] It is unclear if moisture (mucus) there functions to trap odiferous molecules — or is the remnant of a fluid transmission system for pheromonal molecules.

Crenellations

Typically, the rhinarium is crenellated (wrinkled, crackled, or embossed), which may, in theory, increase its sensory area, but there are many exceptions and variations among different mammalian taxa, and also variations in the innervation and sensilla of the rhinarium, so such generalized speculation should be treated with caution regarding this matter. [5]

Function

Mammals with rhinaria tend to have a more acute sense of smell, and the loss of the rhinarium in the haplorrhine primates is related to their decreased reliance on olfaction, being associated with other derived characteristics such as a reduced number of turbinates. The rhinarium is also very useful to animals with good sense of smell because of its role as a wind-direction detector. The cold receptors in the skin respond to the place where evaporation is the highest. Thus the detection of a particular smell is associated with the direction it comes from. [9]

The rhinarium is adapted for different purposes in different mammals, according to ecological niche. In aquatic mammals, the development of lobes beside the nostrils allows them to close for diving. In mammals that dig or root with their noses, the rhinarium often develops into a resilient pad, with the nostrils off to the side (or below) and capable of closing to keep out dust. Examples include the common wombat, marsupial mole, and members of the Chrysochloridae. In elephants, the rhinarium has become a tactile organ. And in the walrus, a covering of stiff bristles protects it while the animal forages for shellfish. In many animals, the form and purpose of the rhinarium remains unclear.

Evolutionary pressures also are not always unequivocally distinguishable, and there have been upheavals in late 20th and early 21st century taxonomy. For example, the lack of an obvious rhinarium in Tarsiiformes has been interpreted by some scholars as the consequence of the enormous development of the eyeballs, rather than a loss of relevance of olfaction, [10] but the significance is currently debatable, because there currently is an influential body of opinion favouring inclusion of the tarsiers in the Haplorhini rather than in the Strepsirrhini as had been traditional. [11]

Phylogeny

Mammalian

The rhinarium is a general mammalian feature and therefore likely to have been present in the stem mammals.

Primate

Primates are phylogenetically divided into those with a rhinarium, the Strepsirrhini (the prosimians: the lorises, and the lemurs); and those without a rhinarium, the Haplorhini, (the Simians: monkeys, apes, and humans). In place of the rhinarium, Haplorhini have a more mobile, continuous, dry upper lip.

Use of term in invertebrates

In an analogous usage unrelated to vertebrate morphology, the term rhinarium is sometimes applied to chemosensory structures in invertebrates. For example, microscopic sensilla in the flattened sense organs on the antennae of aphids are referred to as rhinaria. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Pheromone</span> Secreted or excreted chemical factor that triggers a social response in members of the same species

A pheromone is a secreted or excreted chemical factor that triggers a social response in members of the same species. Pheromones are chemicals capable of acting like hormones outside the body of the secreting individual, to affect the behavior of the receiving individuals. There are alarm pheromones, food trail pheromones, sex pheromones, and many others that affect behavior or physiology. Pheromones are used by many organisms, from basic unicellular prokaryotes to complex multicellular eukaryotes. Their use among insects has been particularly well documented. In addition, some vertebrates, plants and ciliates communicate by using pheromones. The ecological functions and evolution of pheromones are a major topic of research in the field of chemical ecology.

<span class="mw-page-title-main">Vomeronasal organ</span> Smell sense organ above the roof of the mouth

The vomeronasal organ (VNO), or Jacobson's organ, is the paired auxiliary olfactory (smell) sense organ located in the soft tissue of the nasal septum, in the nasal cavity just above the roof of the mouth in various tetrapods. The name is derived from the fact that it lies adjacent to the unpaired vomer bone in the nasal septum. It is present and functional in all snakes and lizards, and in many mammals, including cats, dogs, cattle, pigs, and some primates. Some humans may have physical remnants of a VNO, but it is vestigial and non-functional.

<span class="mw-page-title-main">Flehmen response</span> Behavior in which an animal curls back its upper lip exposing its front teeth

The flehmen response, also called the flehmen position, flehmen reaction, flehmen grimace, flehming, or flehmening, is a behavior in which an animal curls back its upper lip exposing its front teeth, inhales with the nostrils usually closed, and then often holds this position for several seconds. It may be performed over a sight or substance of particular interest to the animal, or may be performed with the neck stretched and the head held high in the air.

<span class="mw-page-title-main">Nasal cavity</span> Large, air-filled space above and behind the nose in the middle of the face

The nasal cavity is a large, air-filled space above and behind the nose in the middle of the face. The nasal septum divides the cavity into two cavities, also known as fossae. Each cavity is the continuation of one of the two nostrils. The nasal cavity is the uppermost part of the respiratory system and provides the nasal passage for inhaled air from the nostrils to the nasopharynx and rest of the respiratory tract.

<span class="mw-page-title-main">Strepsirrhini</span> Suborder of primates

Strepsirrhini or Strepsirhini is a suborder of primates that includes the lemuriform primates, which consist of the lemurs of Madagascar, galagos ("bushbabies") and pottos from Africa, and the lorises from India and southeast Asia. Collectively they are referred to as strepsirrhines. Also belonging to the suborder are the extinct adapiform primates which thrived during the Eocene in Europe, North America, and Asia, but disappeared from most of the Northern Hemisphere as the climate cooled. Adapiforms are sometimes referred to as being "lemur-like", although the diversity of both lemurs and adapiforms does not support this comparison.

<span class="mw-page-title-main">Haplorhini</span> Suborder of primates

Haplorhini, the haplorhines or the "dry-nosed" primates is a suborder of primates containing the tarsiers and the simians, as sister of the Strepsirrhini ("moist-nosed"). The name is sometimes spelled Haplorrhini. The simians include catarrhines, and the platyrrhines.

A chemoreceptor, also known as chemosensor, is a specialized sensory receptor which transduces a chemical substance to generate a biological signal. This signal may be in the form of an action potential, if the chemoreceptor is a neuron, or in the form of a neurotransmitter that can activate a nerve fiber if the chemoreceptor is a specialized cell, such as taste receptors, or an internal peripheral chemoreceptor, such as the carotid bodies. In physiology, a chemoreceptor detects changes in the normal environment, such as an increase in blood levels of carbon dioxide (hypercapnia) or a decrease in blood levels of oxygen (hypoxia), and transmits that information to the central nervous system which engages body responses to restore homeostasis.

<span class="mw-page-title-main">Olfactory system</span> Sensory system used for smelling

The olfactory system or sense of smell is the sensory system used for smelling (olfaction). Olfaction is one of the special senses, that have directly associated specific organs. Most mammals and reptiles have a main olfactory system and an accessory olfactory system. The main olfactory system detects airborne substances, while the accessory system senses fluid-phase stimuli.

<span class="mw-page-title-main">Olfactory receptor</span> Chemoreceptors expressed in cell membranes of olfactory receptor neurons

Olfactory receptors (ORs), also known as odorant receptors, are chemoreceptors expressed in the cell membranes of olfactory receptor neurons and are responsible for the detection of odorants which give rise to the sense of smell. Activated olfactory receptors trigger nerve impulses which transmit information about odor to the brain. In vertebrates, these receptors are members of the class A rhodopsin-like family of G protein-coupled receptors (GPCRs). The olfactory receptors form a multigene family consisting of around 400 genes in humans and 1400 genes in mice. In insects, olfactory receptors are members of an unrelated group of ligand-gated ion channels.

<span class="mw-page-title-main">Philtrum</span> Vertical groove in the middle area of the upper lip

The philtrum or medial cleft is a vertical indentation in the middle area of the upper lip, common to therian mammals, extending in humans from the nasal septum to the tubercle of the upper lip. Together with a glandular rhinarium and slit-like nostrils, it is believed to constitute the primitive condition for at least therian mammals. Monotremes lack a philtrum, though this could be due to the specialised, beak-like jaws in living species.

<span class="mw-page-title-main">Androstenone</span> Chemical compound

Androstenone (5α-androst-16-en-3-one) is a 16-androstene class steroidal pheromone. It is found in boar's saliva, celery cytoplasm, and truffle fungus. Androstenone was the first mammalian pheromone to be identified. It is found in high concentrations in the saliva of male pigs, and, when inhaled by a female pig that is in heat, results in the female assuming the mating stance. Androstenone is the active ingredient in 'Boarmate', a commercial product made by DuPont sold to pig farmers to test sows for timing of artificial insemination.

<span class="mw-page-title-main">Snout</span> Extended part of an animals mouth

A snout is the protruding portion of an animal's face, consisting of its nose, mouth, and jaw. In many animals, the structure is called a muzzle, rostrum, or proboscis. The wet furless surface around the nostrils of the nose of many mammals is called the rhinarium. The rhinarium is often associated with a stronger sense of olfaction.

<span class="mw-page-title-main">Nose</span> Organ that smells and facilitates breathing

A nose is a protuberance in vertebrates that houses the nostrils, or nares, which receive and expel air for respiration alongside the mouth. Behind the nose are the olfactory mucosa and the sinuses. Behind the nasal cavity, air next passes through the pharynx, shared with the digestive system, and then into the rest of the respiratory system. In humans, the nose is located centrally on the face and serves as an alternative respiratory passage especially during suckling for infants. The protruding nose that is completely separate from the mouth part is a characteristic found only in therian mammals. It has been theorized that this unique mammalian nose evolved from the anterior part of the upper jaw of the reptilian-like ancestors (synapsids).

<span class="mw-page-title-main">Sense of smell</span> Sense that detects smells

The sense of smell, or olfaction, is the special sense through which smells are perceived. The sense of smell has many functions, including detecting desirable foods, hazards, and pheromones, and plays a role in taste.

<span class="mw-page-title-main">Vomeronasal receptor</span> Class of olfactory receptors

Vomeronasal receptors are a class of olfactory receptors that putatively function as receptors for pheromones. Pheromones have evolved in all animal phyla, to signal sex and dominance status, and are responsible for stereotypical social and sexual behaviour among members of the same species. In mammals, these chemical signals are believed to be detected primarily by the vomeronasal organ (VNO), a chemosensory organ located at the base of the nasal septum.

<span class="mw-page-title-main">Haller's organ</span> Sensory organ on the front legs of ticks

Haller's organ is a complex sensory organ possessed by hard and soft ticks. Not found outside of Acari, it is proposed to function like the chemosensation of insect antennae, but is structurally different. Ticks, being obligate parasites, must find a host in order to survive. Bloodmeals are necessary for completion of the life cycle, including reproduction and ontogenetic development. First described in 1881, it was named for its discoverer, Haller. While Haller initially proposed it was involved in auditory sensation, this was rejected in favor of olfactory sensation by 1905. This theory was supported by Lee's behavioral studies as early as 1948.

Imprinting is most often used to describe an early-life bond that can later affect an animal's mate choice. More broadly, the term refers to a rapid and selective learning process that only can occur during certain times in an animal's life. In sheep, ewes having just given birth imprint onto their lambs on the basis of olfactory cues, allowing mothers to distinguish their own offspring from other lambs in the flock. This olfactory-based imprinting is dependent on a ewe's behavior after giving birth, on the presence of amniotic fluid, and on a specialized odor-influenced learning process which allows the ewe to quickly memorize the smell of her offspring, to whom she then forms an exclusive maternal bond.

Odor molecules are detected by the olfactory receptors in the olfactory epithelium of the nasal cavity. Each receptor type is expressed within a subset of neurons, from which they directly connect to the olfactory bulb in the brain. Olfaction is essential for survival in most vertebrates; however, the degree to which an animal depends on smell is highly varied. Great variation exists in the number of OR genes among vertebrate species, as shown through bioinformatic analyses. This diversity exists by virtue of the wide-ranging environments that they inhabit. For instance, dolphins that are secondarily adapted to an aquatic niche possess a considerably smaller subset of genes than most mammals. OR gene repertoires have also evolved in relation to other senses, as higher primates with well-developed vision systems tend to have a smaller number of OR genes. As such, investigating the evolutionary changes of OR genes can provide useful information on how genomes respond to environmental changes. Differences in smell sensitivity are also dependent on the anatomy of the olfactory apparatus, such as the size of the olfactory bulb and epithelium.

Pherines, also known as vomeropherines, are odorless synthetic neuroactive steroids that engage nasal chemosensory receptors and induce dose-dependent and reversible pharmacological and behavioral effects. Pherines target human chemosensory receptors and possibly other receptors such as the GABAA receptor and influence central nervous system activity.

<span class="mw-page-title-main">Insect olfaction</span> Function of chemical receptors

Insect olfaction refers to the function of chemical receptors that enable insects to detect and identify volatile compounds for foraging, predator avoidance, finding mating partners and locating oviposition habitats. Thus, it is the most important sensation for insects. Most important insect behaviors must be timed perfectly which is dependent on what they smell and when they smell it. For example, olfaction is essential for locating host plants and hunting prey in many species of insects, such as the moth Deilephila elpenor and the wasp Polybia sericea, respectively.

References

  1. "rhinarium, -arium". Webster's Third New International Dictionary (Unabridged ed.). Encyclopædia Britannica, Inc. 1986.
  2. 1 2 Ankel-Simons, Friderun (2010). Primate anatomy: an introduction. San Diego: Academic Press. p. 392. ISBN   9780080469119. In most mammals we find a moist and shiny glandular area around the nostrils....
  3. Lund University Faculty of Science Department of Biology Mammalian Rhinarium Group
  4. Ankel-Simons 2010, pp. 392–514.
  5. 1 2 Basbaum, Allan I. Kaneko, Akimichi, Shepherd, Gordon G. Westheimer, Gerald (editors). The Senses: A Comprehensive Reference. Academic press 2007. ISBN   978-0126394825
  6. Du Yongjun Yan Fushun Tang Jue. "Structure and Function of Olfactory Sensilla on the Antennae of Soybean Aphids, Aphis glycines". ACTA Entomologica Sinica 1995, Vol. 38 Issue (1): 1–7
  7. Aspinall, Victoria; O'Reilly, Melanie (2004). Introduction to veterinary anatomy and physiology. Edinburgh; New York: Butterworth-Heinemann. p. 98. The chambers and the turbinates are covered by a ciliated mucous epithelium ... These nerve fibers reach the olfactory bulbs of the forebrain ....
  8. Smith, Timothy; Rossie, James (2006), "Primate olfaction: anatomy and evolution", in Brewer, Warrick; Castle, David; Pantelis, Christos (eds.), Olfaction and the Brain, Cambridge; New York: Cambridge University Press, p. 139
  9. S. Dijkgraaf; D. I. Zandee; Alberti Daniel François Addink, eds. (1978). Vergelijkende dierfysiologie (Comparative animal physiology) (in Dutch) (2nd ed.). Utrecht: Bohn, Scheltema & Holkema. ISBN   9789031303229.
  10. Smith, T. D., & Bhatnagar, K. P. (2004). Microsmatic primates: reconsidering how and when size matters. The Anatomical Record Part B: The New Anatomist, 279(1), 24-31.
  11. Frederick S. Szalay; Eric Delson (22 October 2013). Evolutionary History of the Primates. Elsevier Science. pp. 189–. ISBN   978-1-4832-8925-0.
  12. Du Yongjun Yan Fushun Tang Jue. Structure and Function of Olfactory Sensilla on the Antennae of Soybean Aphids, Aphis glycines. ACTA ENTOMOLOGICA SINICA 1995, Vol. 38 Issue (1): 1-7

Bibliography