Riesz function

Last updated
Riesz(x) for x from 0 to 50 Riesz50.png
Riesz(x) for x from 0 to 50

In mathematics, the Riesz function is an entire function defined by Marcel Riesz in connection with the Riemann hypothesis, by means of the power series

Contents

If we set we may define it in terms of the coefficients of the Laurent series development of the hyperbolic (or equivalently, the ordinary) cotangent around zero. If

then F may be defined as

The values of ζ(2k) approach one for increasing k, and comparing the series for the Riesz function with that for shows that it defines an entire function. Alternatively, F may be defined as

denotes the rising factorial power in the notation of D. E. Knuth and the number Bn are the Bernoulli number. The series is one of alternating terms and the function quickly tends to minus infinity for increasingly negative values of x. Positive values of x are more interesting and delicate.

Riesz criterion

It can be shown that

for any exponent e larger than 1/2, where this is big O notation; taking values both positive and negative. Riesz showed that the Riemann hypothesis is equivalent to the claim that the above is true for any e larger than 1/4. [1] In the same paper, he added a slightly pessimistic note too: «Je ne sais pas encore decider si cette condition facilitera la vérification de l'hypothèse» ("I do not know how to decide if this condition will facilitate the verification of the hypothesis").

Mellin transform of the Riesz function

The Riesz function is related to the Riemann zeta function via its Mellin transform. If we take

we see that if then

converges, whereas from the growth condition we have that if then

converges. Putting this together, we see the Mellin transform of the Riesz function is defined on the strip . On this strip, we have (cf. Ramanujan's master theorem)

From the inverse Mellin transform, we now get an expression for the Riesz function, as

where c is between minus one and minus one-half. If the Riemann hypothesis is true, we can move the line of integration to any value less than minus one-fourth, and hence we get the equivalence between the fourth-root rate of growth for the Riesz function and the Riemann hypothesis.

J. garcia (see references) gave the integral representation of using Borel resummation as

and is the fractional part of 'x'

Calculation of the Riesz function

The Maclaurin series coefficients of F increase in absolute value until they reach their maximum at the 40th term of -1.753×1017. By the 109th term they have dropped below one in absolute value. Taking the first 1000 terms suffices to give a very accurate value for for . However, this would require evaluating a polynomial of degree 1000 either using rational arithmetic with the coefficients of large numerator or denominator, or using floating point computations of over 100 digits. An alternative is to use the inverse Mellin transform defined above and numerically integrate. Neither approach is computationally easy.

Another approach is to use acceleration of convergence. We have

Since ζ(2k) approaches one as k grows larger, the terms of this series approach

. Indeed, Riesz noted that:

Using Kummer's method for accelerating convergence gives

with an improved rate of convergence.

Continuing this process leads to a new series for the Riesz function with much better convergence properties:

Here μ is the Möbius mu function, and the rearrangement of terms is justified by absolute convergence. We may now apply Kummer's method again, and write

the terms of which eventually decrease as the inverse fourth power of n.

The above series are absolutely convergent everywhere, and hence may be differentiated term by term, leading to the following expression for the derivative of the Riesz function:

which may be rearranged as

Marek Wolf in [2] assuming the Riemann Hypothesis has shown that for large x:

where is the imaginary part of the first nontrivial zero of the zeta function, and . It agrees with the general theorems about zeros of the Riesz function proved in 1964 by Herbert Wilf. [3]

A plot for the range 0 to 50 is given above. So far as it goes, it does not indicate very rapid growth and perhaps bodes well for the truth of the Riemann hypothesis.

Hardy–Littlewood criterion

G. H. Hardy and J. E. Littlewood [4] [5] proved, by similar methods, that the Riemann hypothesis is equivalent to the claim that the following will be true for any exponent e larger than -1/4:

Notes

  1. M. Riesz, «Sur l'hypothèse de Riemann», Acta Mathematica, 40 (1916), pp.185-90.». For English translation look here
  2. M. Wolf, "Evidence in favor of the Baez-Duarte criterion for the Riemann Hypothesis Archived 2011-06-07 at the Wayback Machine ", Computational Methods in Science and Technology, v.14 (2008) pp.47-54
  3. H.Wilf, " On the zeros of Riesz' function in the analytic theory of numbers", Illinois J. Math., 8 (1964), pp. 639-641
  4. Hardy, G. H.; Littlewood, J. E. (January 1916). "Contributions to the theory of the riemann zeta-function and the theory of the distribution of primes". Acta Mathematica. 41 (none): 119–196. doi: 10.1007/BF02422942 . ISSN   0001-5962.
  5. Dixit, Atul; Roy, Arindam; Zaharescu, Alexandru (2016-03-01). "Riesz-type criteria and theta transformation analogues". Journal of Number Theory. 160: 385–408. doi: 10.1016/j.jnt.2015.08.005 . ISSN   0022-314X.

Related Research Articles

In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann.

<span class="mw-page-title-main">Riemann zeta function</span> Analytic function in mathematics

The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as

In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where the infinite series representation which initially defined the function becomes divergent.

The Liouville lambda function, denoted by λ(n) and named after Joseph Liouville, is an important arithmetic function. Its value is +1 if n is the product of an even number of prime numbers, and −1 if it is the product of an odd number of primes.

<span class="mw-page-title-main">Prime-counting function</span> Function representing the number of primes less than or equal to a given number

In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. It is denoted by π(x) (unrelated to the number π).

In mathematics, a Dirichlet series is any series of the form

<span class="mw-page-title-main">Hurwitz zeta function</span> Special function in mathematics

In mathematics, the Hurwitz zeta function is one of the many zeta functions. It is formally defined for complex variables s with Re(s) > 1 and a ≠ 0, −1, −2, … by

<span class="mw-page-title-main">Mertens function</span> Summatory function of the Möbius function

In number theory, the Mertens function is defined for all positive integers n as

<span class="mw-page-title-main">Polylogarithm</span> Special mathematical function

In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Lis(z) of order s and argument z. Only for special values of s does the polylogarithm reduce to an elementary function such as the natural logarithm or a rational function. In quantum statistics, the polylogarithm function appears as the closed form of integrals of the Fermi–Dirac distribution and the Bose–Einstein distribution, and is also known as the Fermi–Dirac integral or the Bose–Einstein integral. In quantum electrodynamics, polylogarithms of positive integer order arise in the calculation of processes represented by higher-order Feynman diagrams.

The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.

In mathematics, the Gauss–Kuzmin–Wirsing operator is the transfer operator of the Gauss map that takes a positive number to the fractional part of its reciprocal. It is named after Carl Gauss, Rodion Kuzmin, and Eduard Wirsing. It occurs in the study of continued fractions; it is also related to the Riemann zeta function.

In mathematics, the Weierstrass functions are special functions of a complex variable that are auxiliary to the Weierstrass elliptic function. They are named for Karl Weierstrass. The relation between the sigma, zeta, and functions is analogous to that between the sine, cotangent, and squared cosecant functions: the logarithmic derivative of the sine is the cotangent, whose derivative is negative the squared cosecant.

In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. It is an example of an important arithmetic function that is neither multiplicative nor additive.

<span class="mw-page-title-main">Barnes G-function</span>

In mathematics, the Barnes G-functionG(z) is a function that is an extension of superfactorials to the complex numbers. It is related to the gamma function, the K-function and the Glaisher–Kinkelin constant, and was named after mathematician Ernest William Barnes. It can be written in terms of the double gamma function.

In mathematics, the explicit formulae for L-functions are relations between sums over the complex number zeroes of an L-function and sums over prime powers, introduced by Riemann (1859) for the Riemann zeta function. Such explicit formulae have been applied also to questions on bounding the discriminant of an algebraic number field, and the conductor of a number field.

In mathematics, Apéry's constant is the sum of the reciprocals of the positive cubes. That is, it is defined as the number

In mathematics, the Riemann zeta function is a function in complex analysis, which is also important in number theory. It is often denoted and is named after the mathematician Bernhard Riemann. When the argument is a real number greater than one, the zeta function satisfies the equation

In mathematics, the Riesz mean is a certain mean of the terms in a series. They were introduced by Marcel Riesz in 1911 as an improvement over the Cesàro mean. The Riesz mean should not be confused with the Bochner–Riesz mean or the Strong–Riesz mean.

In mathematics, the prime zeta function is an analogue of the Riemann zeta function, studied by Glaisher (1891). It is defined as the following infinite series, which converges for :

<span class="mw-page-title-main">Riemann hypothesis</span> Conjecture on zeros of the zeta function

In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by Bernhard Riemann, after whom it is named.

References