Robert J. Harrison

Last updated
Robert J. Harrison
BornJune 19, 1960 (1960-06-19) (age 61)
Birmingham, England
Alma mater University of Cambridge
Known for MADNESS, NWChem
Scientific career
Fields Chemistry, Applied Mathematics, and Computer Science
Doctoral advisor Nicholas Handy

Robert J. Harrison (born June 19, 1960) is a distinguished expert in high-performance computing. He is a professor in the Applied Mathematics and Statistics department [1] and founding Director of the Institute for Advanced Computational Science at Stony Brook University [2] with a $20M endowment. [3] Through a joint appointment with Brookhaven National Laboratory, Professor Harrison has also been named Director of the Computational Science Center [4] and New York Center for Computational Sciences [5] at Brookhaven. Dr. Harrison comes to Stony Brook from the University of Tennessee and Oak Ridge National Laboratory, where he was Director of the Joint Institute of Computational Science, [6] Professor of Chemistry and Corporate Fellow. He has a prolific career in high-performance computing with over one hundred publications on the subject, as well as extensive service on national advisory committees.

Contents

He has many publications in peer-reviewed journals in the areas of theoretical and computational chemistry, and high-performance computing. His undergraduate (1981) and post-graduate (1984) degrees were obtained at Cambridge University, England. Subsequently, he worked as a postdoctoral research fellow at the Quantum Theory Project, University of Florida, and the Daresbury Laboratory, England, before joining the staff of the theoretical chemistry group at Argonne National Laboratory in 1988. In 1992, he moved to the Environmental Molecular Sciences Laboratory of Pacific Northwest National Laboratory, conducting research in theoretical chemistry and leading the development of NWChem, a computational chemistry code for massively parallel computers. In August 2002, he started the joint faculty appointment with UT/ORNL, and became director of JICS in 2011.

In addition to his DOE Scientific Discovery through Advanced Computing (SciDAC) research into efficient and accurate calculations on large systems, he has been pursuing applications in molecular electronics and chemistry at the nanoscale. In 1999, the NWChem team received an R&D Magazine R&D100 award, [7] in 2002, he received the IEEE Computer Society Sidney Fernbach Award, [8] and in 2011 another R&D Magazine R&D100 award for the development of MADNESS. [9] In 2015-2016, Dr. Harrison co-chaired with Bill Gropp the National Academies of Sciences, Engineering, and Medicine committee on Future Directions for NSF Advanced Computing Infrastructure to Support U.S. Science in 2017-2020. [10]

His interests and expertise are in theoretical and computational chemistry, high-performance computing, electron correlation, electron transport, relativistic quantum chemistry, and response theory.

Bibliography

  1. Beylkin, Gregory; Fann, George; Harrison, Robert J.; Kurcz, Christopher; Monzón, Lucas (2012). "Multiresolution representation of operators with boundary conditions on simple domains" (PDF). Applied and Computational Harmonic Analysis. 33: 109. doi: 10.1016/j.acha.2011.10.001 .
  2. Gothandaraman, Akila; Peterson, Gregory D.; Warren, G.L.; Hinde, Robert J.; Harrison, Robert J. (2008). "FPGA acceleration of a quantum Monte Carlo application". Parallel Computing. 34 (4–5): 278. doi:10.1016/j.parco.2008.01.009.
  3. Sekino, Hideo; Maeda, Yasuyuki; Yanai, Takeshi; Harrison, Robert J. (2008). "Basis set limit Hartree–Fock and density functional theory response property evaluation by multiresolution multiwavelet basis". The Journal of Chemical Physics. 129 (3): 034111. Bibcode:2008JChPh.129c4111S. doi:10.1063/1.2955730. PMID   18647020.
  4. Beste, Ariana; Meunier, Vincent; Harrison, Robert J. (2008). "Electron transport in open systems from finite-size calculations: Examination of the principal layer method applied to linear gold chains". The Journal of Chemical Physics. 128 (15): 154713. Bibcode:2008JChPh.128o4713B. doi:10.1063/1.2905219. PMID   18433264.
  5. Hirata, So; Yanai, Takeshi; Harrison, Robert J.; Kamiya, Muneaki; Fan, Peng-Dong (2007). "High-order electron-correlation methods with scalar relativistic and spin-orbit corrections". The Journal of Chemical Physics. 126 (2): 024104. Bibcode:2007JChPh.126b4104H. doi:10.1063/1.2423005. PMID   17228940.
  6. Gan, Zhengting; Grant, Daniel J.; Harrison, Robert J.; Dixon, David A. (2006). "The lowest energy states of the group-IIIA–group-VA heteronuclear diatomics: BN, BP, AlN, and AlP from full configuration interaction calculations". The Journal of Chemical Physics. 125 (12): 124311. Bibcode:2006JChPh.125l4311G. doi:10.1063/1.2335446. PMID   17014178.
  7. Harrison, Robert J.; Fann, George I.; Yanai, Takeshi; Gan, Zhengting; Beylkin, Gregory (2004). "Multiresolution quantum chemistry: Basic theory and initial applications". The Journal of Chemical Physics. 121 (23): 11587–98. Bibcode:2004JChPh.12111587H. doi:10.1063/1.1791051. PMID   15634124.

Related Research Articles

MOLPRO

MOLPRO is a software package used for accurate ab initio quantum chemistry calculations. It is developed by Peter Knowles at Cardiff University and Hans-Joachim Werner at Universität Stuttgart in collaboration with other authors.

NWChem is an ab initio computational chemistry software package which includes quantum chemical and molecular dynamics functionality. It was designed to run on high-performance parallel supercomputers as well as conventional workstation clusters. It aims to be scalable both in its ability to treat large problems efficiently, and in its usage of available parallel computing resources. NWChem has been developed by the Molecular Sciences Software group of the Theory, Modeling & Simulation program of the Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National Laboratory (PNNL). The early implementation was funded by the EMSL Construction Project.

In computational chemistry, post–Hartree–Fock methods are the set of methods developed to improve on the Hartree–Fock (HF), or self-consistent field (SCF) method. They add electron correlation which is a more accurate way of including the repulsions between electrons than in the Hartree–Fock method where repulsions are only averaged.

Spartan (chemistry software)

Spartan is a molecular modelling and computational chemistry application from Wavefunction. It contains code for molecular mechanics, semi-empirical methods, ab initio models, density functional models, post-Hartree–Fock models, and thermochemical recipes including G3(MP2) and T1. Quantum chemistry calculations in Spartan are powered by Q-Chem.

Ab initio quantum chemistry methods are computational chemistry methods based on quantum chemistry. The term ab initio was first used in quantum chemistry by Robert Parr and coworkers, including David Craig in a semiempirical study on the excited states of benzene. The background is described by Parr. Ab initio means "from first principles" or "from the beginning", implying that the only inputs into an ab initio calculation are physical constants. Ab initio quantum chemistry methods attempt to solve the electronic Schrödinger equation given the positions of the nuclei and the number of electrons in order to yield useful information such as electron densities, energies and other properties of the system. The ability to run these calculations has enabled theoretical chemists to solve a range of problems and their importance is highlighted by the awarding of the Nobel prize to John Pople and Walter Kohn.

Quantum chemistry composite methods are computational chemistry methods that aim for high accuracy by combining the results of several calculations. They combine methods with a high level of theory and a small basis set with methods that employ lower levels of theory with larger basis sets. They are commonly used to calculate thermodynamic quantities such as enthalpies of formation, atomization energies, ionization energies and electron affinities. They aim for chemical accuracy which is usually defined as within 1 kcal/mol of the experimental value. The first systematic model chemistry of this type with broad applicability was called Gaussian-1 (G1) introduced by John Pople. This was quickly replaced by the Gaussian-2 (G2) which has been used extensively. The Gaussian-3 (G3) was introduced later.

In computer software, FreeON is an experimental, open source (GPL) suite of programs for linear scaling quantum chemistry, formerly known as MondoSCF. It is highly modular, and has been written from scratch for N-scaling SCF theory in Fortran95 and C. Platform independent IO is supported with HDF5. FreeON should compile with most modern Linux distributions. FreeON performs Hartree–Fock, pure density functional, and hybrid HF/DFT calculations in a Cartesian-Gaussian LCAO basis. All algorithms are O(N) or O(N lg N) for non-metallic systems. Periodic boundary conditions in 1, 2 and 3 dimensions have been implemented through the Lorentz field, and an internal coordinate geometry optimizer allows full (atom+cell) relaxation using analytic derivatives. Effective core potentials for energies and forces have been implemented, but Effective Core Potential (ECP) lattice forces do not work yet. Advanced features include O(N) static and dynamic response, as well as time reversible Born Oppenheimer Molecular Dynamics (MD).

David Ceperley

David Matthew Ceperley is a theoretical physicist in the physics department at the University of Illinois Urbana-Champaign or UIUC. He is a world expert in the area of Quantum Monte Carlo computations, a method of calculation that is generally recognised to provide accurate quantitative results for many-body problems described by quantum mechanics.

Ascalaph Designer

Ascalaph Designer is a computer program for general purpose molecular modelling for molecular design and simulations. It provides a graphical environment for the common programs of quantum and classical molecular modelling ORCA, NWChem, Firefly, CP2K and MDynaMix . The molecular mechanics calculations cover model building, energy optimizations and molecular dynamics. Firefly covers a wide range of quantum chemistry methods. Ascalaph Designer is free and open-source software, released under the GNU General Public License, version 2 (GPLv2).

Angela K. Wilson is an American physical, theoretical, and computational chemist. She is currently the John A. Hannah Distinguished Professor of Chemistry in the department of chemistry of Michigan State University. At Michigan State University, she also serves as the Associate Dean for Strategic Initiatives in the College of Natural Sciences, and as Director of the MSU Center for Quantum Computing, Science, and Engineering (MSU-Q), a newly formed center at MSU, stemming from MSU's long history in quantum computing research.

MADNESS is a high-level software environment for the solution of integral and differential equations in many dimensions using adaptive and fast harmonic analysis methods with guaranteed precision based on multiresolution analysis and separated representations .

BigDFT is a free software package for physicists and chemists, distributed under the GNU General Public License, whose main program allows the total energy, charge density, and electronic structure of systems made of electrons and nuclei to be calculated within density functional theory (DFT), using pseudopotentials, and a wavelet basis.

Piotr Piecuch

Piotr Piecuch is a Polish-born American physical chemist. He holds the title of University Distinguished Professor in the Department of Chemistry at Michigan State University, East Lansing, Michigan, United States. He supervises a group, whose research focuses on theoretical and computational chemistry as well as theoretical and computational physics, particularly on the development and applications of many-body methods for accurate quantum calculations for molecular systems and atomic nuclei, including methods based on coupled cluster theory, mathematical methods of chemistry and physics, and theory of intermolecular forces. His group is also responsible for the development of the coupled-cluster computer codes incorporated in the widely used GAMESS (US) package.

James B. Anderson American chemist and physicist (1935 - 2021)

James Bernhard Anderson was an American chemist and physicist. From 1995 to 2014 he was Evan Pugh Professor of Chemistry and Physics at the Pennsylvania State University. He specialized in Quantum Chemistry by Monte Carlo methods, molecular dynamics of reactive collisions, kinetics and mechanisms of gas phase reactions, and rare-event theory.

Ali Alavi

Ali Alavi FRS is a professor of theoretical chemistry in the Department of Chemistry at the University of Cambridge and a Director of the Max Planck Institute for Solid State Research in Stuttgart.

Pople diagram

A Pople diagram or Pople's Diagram is a diagram which describes the relationship between various calculation methods in computational chemistry. It was initially introduced in January 1965 by Sir John Pople,, during the Symposium of Atomic and Molecular Quantum Theory in Florida. The Pople Diagram can be either 2-dimensional or 3-dimensional, with the axes representing ab inito methods, basis sets and treatment of relativity. The diagram attempts to balance calculations by giving all aspects of a computation equal weight.

Quantum crystallography is a branch of crystallography that investigates crystalline materials within the framework of quantum mechanics, with analysis and representation, in position or in momentum space, of quantities like wave function, electron charge and spin density, density matrices and all properties related to them. Like the quantum chemistry, Quantum crystallography involves both experimental and computational work. The theoretical part of quantum crystallography is based on quantum mechanical calculations of atomic/molecular/crystal wave functions, density matrices or density models, used to simulate the electronic structure of a crystalline material. While in quantum chemistry, the experimental works mainly rely on spectroscopy, in quantum crystallography the scattering techniques play the central role, although spectroscopy as well as atomic microscopy are also sources of information.

Edmond Chow is an associate professor in the School of Computational Science and Engineering of Georgia Institute of Technology. His main areas of research are in designing numerical methods for high-performance computing and applying these methods to solve large-scale scientific computing problems.

Harold Basch Professor of Chemistry

Harold Basch was a Professor of Chemistry who specialized in Computational Chemistry.

Mixed quantum-classical dynamics

Mixed quantum-classical (MQC) dynamics is a class of computational theoretical chemistry methods tailored to simulate nonadiabatic (NA) processes in molecular and supramolecular chemistry. Such methods are characterized by:

  1. Propagation of nuclear dynamics through classical trajectories;
  2. Propagation of the electrons through quantum methods;
  3. A feedback algorithm between the electronic and nuclear subsystems to recover nonadiabatic information.

References