Sarcosine dehydrogenase

Last updated
Sarcosine dehydrogenase
Identifiers
EC no. 1.5.8.3
CAS no. 37228-65-2
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, sarcosine dehydrogenase (EC 1.5.8.3) is a mitochondrial enzyme that catalyzes the chemical reaction N-demethylation of sarcosine to give glycine. [1] This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-NH group of donor with other acceptors. The systematic name of this enzyme class is sarcosine:acceptor oxidoreductase (demethylating). Other names in common use include sarcosine N-demethylase, monomethylglycine dehydrogenase, and sarcosine:(acceptor) oxidoreductase (demethylating). Sarcosine dehydrogenase is closely related to dimethylglycine dehydrogenase, which catalyzes the demethylation reaction of dimethylglycine to sarcosine. Both sarcosine dehydrogenase and dimethylglycine dehydrogenase use FAD as a cofactor. Sarcosine dehydrogenase is linked by electron-transferring flavoprotein (ETF) to the respiratory redox chain. [2] The general chemical reaction catalyzed by sarcosine dehydrogenase is:

Contents

sarcosine + acceptor + H2O glycine + formaldehyde + reduced acceptor

Structure

There is no crystal structure available for sarcosine dehydrogenase. Sarcosine dehydrogenase contains a covalently bound FAD group " linked via the 8 alpha position of the isoalloxazine ring to an imidazole N(3) of a histidine residue". [3] The enzyme, according to Freisell Wr. et al., also contains non-heme iron in a ratio of 1 or 2 iron per 300000g of enzyme, [4] and 0.5 mol of acid soluble sulfur suggesting that the electron transfer during the first step in the reaction might proceed through a different pathway than that of Fe-S clusters. [3]

Mechanism

Figure 1: First step in sarcosine dehydrogenase catalyzed reaction mechanism Mechanism 1st step 1.png
Figure 1: First step in sarcosine dehydrogenase catalyzed reaction mechanism
Figure 2: Sarcosine going to glycine reaction mechanism without THF present. Sarcosine Mechanism.png
Figure 2: Sarcosine going to glycine reaction mechanism without THF present.
Figure 3: Sarcosine going to glycine reaction mechanism with tetrahydrofolate (THF) present. Sarcosine MechanismTHF.png
Figure 3: Sarcosine going to glycine reaction mechanism with tetrahydrofolate (THF) present.

Sarcosine dehydrogenase, with sarcosine as its substrate, follows Michaelis–Menten kinetics and has a Km of 0.5 mM and a Vmax of 16 mmol/hr/mg protein. [8] The enzyme is inhibited competitively by methoxyacetic acid, which has a Ki of 0.26 mM [9]

The exact mechanism of sarcosine dehydrogenase is not available. However, according to the overall net reaction discussed in Honova.E, et al. paper:

the first step of the reaction might involve the transfer of a hydride on the N-methyl group of sarcosine onto FAD, allowing H2O to attack the carbocation in order to form intermediate 1 (See figure 1). There is no deamination step. Instead, the demethylation of the N-methyl group on sarcosine occurs directly. [6] The reduced FADH from the first step then is oxidized by O2 to form H2O2. [5]

The demethylation of sarcosine catalyzed by sarcosine dehydrogenase can proceed with or without the presence of tetrahydrofolate. [11] Under anaerobic condition and without tetrahydrofolate, however, a free formaldehyde is formed after the N-demethylation of sarcosine. [12] The reaction with 1 mole of sarcosine and 1 mole of FAD, under this condition, yields 1 mole of glycine and 1 mole of formaldehyde (See figure 2 for mechanism). [9]

Under the presence of tetrahydrofolate, sarcosine dehydrogenase binds to tetrahydrofolate and convert tetrahydrofolate to 5,10-methylenetetrahydrofolate. Tetrahydrofolate here serves as a 1-carbon acceptor during the demethylation process (See figure 3 for mechanism). [2]

Function

Sarcosine dehydrogenase is one of the enzymes in sarcosine metabolism, which catalyzes the demethylation of sarcosine to make glycine. It is preceded by dimethylglycine dehydrogenase which turns dimethylglycine into sarcosine. Glycine can also be turned into sarcosine by glycine N-methyltransferase. [13] Since glycine is the production of sarcosine dehydrogenase catalyzed reaction, aside from sarcosine metabolism, the enzyme is also indirectly connected to the creatine cycle and the respiratory chain in the mitochondria [14] [15] [16] (See figure 4 for pathway). Even so, the biological significance of sarcosine dehydrogenase beyond sarcosine metabolism is not entirely known. In a study of hereditary hemochromatosis using both wild type and HFE (gene) deficient mice fed with 2 percent carbonyl iron supplemented diet, sarcosine dehydrogenase was shown to be down-regulated in HFE deficient mice, but role sarcosine dehydrogenase in iron metabolism is unknown from the experiment conducted. [17]

Figure 4: Sarcosine metabolism and related pathway. Sarcosine-glycine pathway.png
Figure 4: Sarcosine metabolism and related pathway.

Disease relevance

Sarcosinemia

Sarcosinemia is an autosomal recessive disease caused by a mutation of the sarcosine dehydrogenase gene in the 9q33-q34 gene locus. [18] This leads to a compromised sarcosine metabolism and causes the build-up of sarcosine in blood and urine, a condition known as sarcosinemia.

Prostate cancer

In addition to sarcosinaemia, sarcosine dehydrogenase also seems to play a role in the progression process of prostate cancer. The concentration of sarcosine, along with those of uracil, kynurenine, glycerol 3-phosphate, leucine and proline increases as prostate cancer progresses. Thus, sarcosine can be used as a potential biomarker for the detection of prostate cancer and for measuring the progress of the disease. [19] As Sreekumar, A. et al.’s paper shows, the removal of sarcosine dehydrogenase from benign prostate epithelial cells increases the concentration of sarcosine and increase cancer cell invasions while the removal of either dimethylglycine dehydrogenase or glycine N-methyltransferase in prostate cancer cells decreases cell invasions. This demonstrates that sarcosine metabolism plays a key-role in prostate cancer cell invasion and migration. Sreekumar’s study suggests that sarcosine dehydrogenase and other enzymes in the sarcosine metabolism pathways could be potential therapeutic targets for prostate cancer. [13] However, a study done by Jentzmik F. et al. by analyzing sarcosine level in 92 patients with prostate cancer draws a different conclusion: sarcosine cannot be used as an indicator and biomarker for prostate cancer. [20]

See also

Related Research Articles

<span class="mw-page-title-main">Sarcosine</span> Chemical compound

Sarcosine, also known as N-methylglycine, or monomethylglycine, is a amino acid with the formula CH3N(H)CH2CO2H. It exists at neutral pH as the zwitterion CH3N+(H)2CH2CO2, which can be obtained as a white, water-soluble powder. Like some amino acids, sarcosine converts to a cation at low pH and an anion at high pH, with the respective formulas CH3N+(H)2CH2CO2H and CH3N(H)CH2CO2. Sarcosine is a close relative of glycine, with a secondary amine in place of the primary amine.

<span class="mw-page-title-main">Irwin Rose</span> American biologist

Irwin Allan Rose was an American biologist. Along with Aaron Ciechanover and Avram Hershko, he was awarded the 2004 Nobel Prize in Chemistry for the discovery of ubiquitin-mediated protein degradation.

Acyl-CoA dehydrogenases (ACADs) are a class of enzymes that function to catalyze the initial step in each cycle of fatty acid β-oxidation in the mitochondria of cells. Their action results in the introduction of a trans double-bond between C2 (α) and C3 (β) of the acyl-CoA thioester substrate. Flavin adenine dinucleotide (FAD) is a required co-factor in addition to the presence of an active site glutamate in order for the enzyme to function.

<span class="mw-page-title-main">Serine hydroxymethyltransferase</span>

Serine hydroxymethyltransferase (SHMT) is a pyridoxal phosphate (PLP) (Vitamin B6) dependent enzyme (EC 2.1.2.1) which plays an important role in cellular one-carbon pathways by catalyzing the reversible, simultaneous conversions of L-serine to glycine and tetrahydrofolate (THF) to 5,10-Methylenetetrahydrofolate (5,10-CH2-THF). This reaction provides the largest part of the one-carbon units available to the cell.

17β-Hydroxysteroid dehydrogenases, also 17-ketosteroid reductases (17-KSR), are a group of alcohol oxidoreductases which catalyze the reduction of 17-ketosteroids and the dehydrogenation of 17β-hydroxysteroids in steroidogenesis and steroid metabolism. This includes interconversion of DHEA and androstenediol, androstenedione and testosterone, and estrone and estradiol.

<span class="mw-page-title-main">Arginine:glycine amidinotransferase</span> Enzyme

L-Arginine:glycine amidinotransferase is the enzyme that catalyses the transfer of an amidino group from L-arginine to glycine. The products are L-ornithine and glycocyamine, also known as guanidinoacetate, the immediate precursor of creatine. Creatine and its phosphorylated form play a central role in the energy metabolism of muscle and nerve tissues. Creatine is in highest concentrations in the skeletal muscle, heart, spermatozoa and photoreceptor cells. Creatine helps buffer the rapid changes in ADP/ATP ratio in muscle and nerve cells during active periods. Creatine is also synthesized in other tissues, such as pancreas, kidneys, and liver, where amidinotransferase is located in the cytoplasm, including the intermembrane space of the mitochondria, of the cells that make up those tissues.

In enzymology, a testosterone 17beta-dehydrogenase is an enzyme that catalyzes the chemical reaction between testosterone and androst-4-ene-3,17-dione. This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-OH group of donor with NAD+ or NADP+ as acceptor.

<span class="mw-page-title-main">Dihydropyrimidine dehydrogenase (NADP+)</span> Class of enzymes

In enzymology, a dihydropyrimidine dehydrogenase (NADP+) (EC 1.3.1.2) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Isovaleryl-CoA dehydrogenase</span>

In enzymology, an isovaleryl-CoA dehydrogenase is an enzyme that catalyzes the chemical reaction

In enzymology, a D-lactate dehydrogenase (cytochrome) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">3-methyl-2-oxobutanoate dehydrogenase</span> Class of enzymes

In enzymology, a 3-methyl-2-oxobutanoate dehydrogenase (EC 1.2.4.4) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Betaine-aldehyde dehydrogenase</span> Enzyme

In enzymology, a betaine-aldehyde dehydrogenase (EC 1.2.1.8) is an enzyme that catalyzes the chemical reaction

In enzymology, a dimethylglycine dehydrogenase (EC 1.5.8.4) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Glycine dehydrogenase (decarboxylating)</span> Protein-coding gene in the species Homo sapiens

Glycine decarboxylase also known as glycine cleavage system P protein or glycine dehydrogenase is an enzyme that in humans is encoded by the GLDC gene.

In enzymology, a nitroalkane oxidase (EC 1.7.3.1) is an enzyme that catalyzes the chemical reaction

In enzymology, a trimethylamine dehydrogenase (EC 1.5.8.2) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">3-oxoacid CoA-transferase</span> Enzyme family

In enzymology, a 3-oxoacid CoA-transferase is an enzyme that catalyzes the chemical reaction

Glutaminolysis (glutamine + -lysis) is a series of biochemical reactions by which the amino acid glutamine is lysed to glutamate, aspartate, CO2, pyruvate, lactate, alanine and citrate.

<span class="mw-page-title-main">Glycine cleavage system</span>

The glycine cleavage system (GCS) is also known as the glycine decarboxylase complex or GDC. The system is a series of enzymes that are triggered in response to high concentrations of the amino acid glycine. The same set of enzymes is sometimes referred to as glycine synthase when it runs in the reverse direction to form glycine. The glycine cleavage system is composed of four proteins: the T-protein, P-protein, L-protein, and H-protein. They do not form a stable complex, so it is more appropriate to call it a "system" instead of a "complex". The H-protein is responsible for interacting with the three other proteins and acts as a shuttle for some of the intermediate products in glycine decarboxylation. In both animals and plants, the glycine cleavage system is loosely attached to the inner membrane of the mitochondria. Mutations in this enzymatic system are linked with glycine encephalopathy.

<span class="mw-page-title-main">NADH:ubiquinone reductase (non-electrogenic)</span> Class of enzymes

NADH:ubiquinone reductase (non-electrogenic) (EC 1.6.5.9, NDH-2, ubiquinone reductase, coenzyme Q reductase, dihydronicotinamide adenine dinucleotide-coenzyme Q reductase, DPNH-coenzyme Q reductase, DPNH-ubiquinone reductase, NADH-coenzyme Q oxidoreductase, NADH-coenzyme Q reductase, NADH-CoQ oxidoreductase, NADH-CoQ reductase) is an enzyme with systematic name NADH:ubiquinone oxidoreductase. This enzyme catalyses the following chemical reaction:

References

  1. Steenkamp DJ, Husain M (June 1982). "The effect of tetrahydrofolate on the reduction of electron transfer flavoprotein by sarcosine and dimethylglycine dehydrogenases". Biochem. J. 203 (3): 707–15. doi:10.1042/bj2030707. PMC   1158287 . PMID   6180732.
  2. 1 2 Leys D, Basran J, Scrutton NS (August 2003). "Channelling and formation of 'active' formaldehyde in dimethylglycine oxidase". EMBO J. 22 (16): 4038–48. doi:10.1093/emboj/cdg395. PMC   175785 . PMID   12912903.
  3. 1 2 Cook RJ, Misono KS, Wagner C (October 1985). "The amino acid sequences of the flavin-peptides of dimethylglycine dehydrogenase and sarcosine dehydrogenase from rat liver mitochondria". J. Biol. Chem. 260 (24): 12998–3002. doi: 10.1016/S0021-9258(17)38827-0 . PMID   4055729.
  4. FRISELL WR, MACKENZIE CG (January 1962). "Separation and purification of sarcosine dehydrogenase and dimethylglycine dehydrogenase". J. Biol. Chem. 237: 94–8. doi: 10.1016/S0021-9258(18)81367-9 . PMID   13895406.
  5. 1 2 Roth JP, Klinman JP (January 2003). "Catalysis of electron transfer during activation of O2 by the flavoprotein glucose oxidase". Proc. Natl. Acad. Sci. U.S.A. 100 (1): 62–7. doi: 10.1073/pnas.252644599 . PMC   404145 . PMID   12506204.
  6. 1 2 "www.jbc.org" (PDF).
  7. HUENNEKENS FM, WHITELEY HR, OSBORN MJ (December 1959). "Mechanisms of formylation and hydroxymethylation reactions". J Cell Comp Physiol. 54: 109–25. doi:10.1002/jcp.1030540410. PMID   14403792.
  8. Sato M, Ohishi N, Yagi K (April 1979). "Identification of a covalently bound flavoprotein in rat liver mitochondria with sarcosine dehydrogenase". Biochem. Biophys. Res. Commun. 87 (3): 706–11. doi:10.1016/0006-291X(79)92016-3. PMID   454421.
  9. 1 2 Porter DH, Cook RJ, Wagner C (December 1985). "Enzymatic properties of dimethylglycine dehydrogenase and sarcosine dehydrogenase from rat liver". Arch. Biochem. Biophys. 243 (2): 396–407. doi:10.1016/0003-9861(85)90516-8. PMID   2417560.
  10. Honová E, Drahota Z, Hahn P (August 1967). "Sarcosine dehydrogenase activity in liver mitochondria of infant and adult rats". Experientia. 23 (8): 632–3. doi:10.1007/bf02144166. PMID   6051684. S2CID   32369212.
  11. Wittwer AJ, Wagner C (August 1980). "Identification of folate binding protein of mitochondria as dimethylglycine dehydrogenase". Proc. Natl. Acad. Sci. U.S.A. 77 (8): 4484–8. doi: 10.1073/pnas.77.8.4484 . PMC   349868 . PMID   6159630.
  12. MITOMA C, GREENBERG DM (May 1952). "Studies on the mechanism of the biosynthesis of serine". J. Biol. Chem. 196 (2): 599–614. doi: 10.1016/S0021-9258(19)52395-X . PMID   12981004.
  13. 1 2 Sreekumar A, Poisson LM, Rajendiran TM, et al. (February 2009). "Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression" (PDF). Nature. 457 (7231): 910–4. doi:10.1038/nature07762. hdl:2027.42/62661. PMC   2724746 . PMID   19212411.
  14. 1 2 Wyss M, Kaddurah-Daouk R (July 2000). "Creatine and creatinine metabolism". Physiol. Rev. 80 (3): 1107–213. doi:10.1152/physrev.2000.80.3.1107. PMID   10893433.
  15. 1 2 Glorieux FH, Scriver CR, Delvin E, Mohyuddin F (November 1971). "Transport and metabolism of sarcosine in hypersarcosinemic and normal phenotypes". J. Clin. Invest. 50 (11): 2313–22. doi:10.1172/JCI106729. PMC   292173 . PMID   5096515.
  16. 1 2 Moolenaar SH, Poggi-Bach J, Engelke UF, et al. (April 1999). "Defect in dimethylglycine dehydrogenase, a new inborn error of metabolism: NMR spectroscopy study". Clin. Chem. 45 (4): 459–64. doi: 10.1093/clinchem/45.4.459 . PMID   10102904.
  17. Petrak J, Myslivcova D, Halada P, et al. (2007). "Iron-independent specific protein expression pattern in the liver of HFE-deficient mice". Int. J. Biochem. Cell Biol. 39 (5): 1006–15. doi:10.1016/j.biocel.2007.01.021. PMID   17376729.
  18. Eschenbrenner M, Jorns MS (August 1999). "Cloning and mapping of the cDNA for human sarcosine dehydrogenase, a flavoenzyme defective in patients with sarcosinemia". Genomics. 59 (3): 300–8. doi:10.1006/geno.1999.5886. PMID   10444331.
  19. Baum CE, Price DK, Figg WD (March 2010). "Sarcosine as a potential prostate cancer biomarker and therapeutic target". Cancer Biol. Ther. 9 (5): 341–2. doi:10.4161/cbt.9.5.11310. PMC   2874119 . PMID   20150759.
  20. Jentzmik F, Stephan C, Lein M, et al. (February 2011). "Sarcosine in prostate cancer tissue is not a differential metabolite for prostate cancer aggressiveness and biochemical progression". J. Urol. 185 (2): 706–11. doi:10.1016/j.juro.2010.09.077. PMID   21168877.

Further reading