Scissors mechanism

Last updated
An example of a simple scissor lift TL 2000 scissor lift.jpg
An example of a simple scissor lift
A pantograph mirror Pantograph Mirror.gif
A pantograph mirror

A scissors mechanism uses linked, folding supports in a criss-cross 'X' pattern. [1]

Contents

The scissor mechanism is a mechanical linkage system used to create vertical motion or extension. It consists of a series of interconnected, folding supports that resemble the shape of a pair of scissors, hence its name. The scissor mechanism is widely employed in various applications, including scissor lifts, folding tables, adjustable height platforms, and automotive jacks. [2]

Workings

Extension is achieved by applying pressure to the outside of a set of supports located at one end of the mechanism, elongating the crossing pattern. This can be achieved through hydraulic, pneumatic, mechanical or simply muscular means.

A power source is turned on resulting in the flow of hydraulic fluid or air (in the case of a pneumatic lift) in the cylinder. The hydraulic cylinder thrust outward for upraised movement and that in turn lead the scissor legs to spread and raise the platform table upwards. To lower the lift, the operator uses a down valve to release hydraulic fluid or pneumatic pressure, which causes the scissor legs to retract. [3] [4]

Uses

This mechanism is used in devices such as lift tables and scissor lifts. Modern low-profile computer keyboards make an extensive use of it as well, installing each key on a scissor support to ensure their smooth vertical movement, allowing the use of a cheap and reliable rubber dome contact set, instead of expensive and complex array of mechanical switches.

See also

Related Research Articles

<span class="mw-page-title-main">Hydraulics</span> Applied engineering involving liquids

Hydraulics is a technology and applied science using engineering, chemistry, and other sciences involving the mechanical properties and use of liquids. At a very basic level, hydraulics is the liquid counterpart of pneumatics, which concerns gases. Fluid mechanics provides the theoretical foundation for hydraulics, which focuses on applied engineering using the properties of fluids. In its fluid power applications, hydraulics is used for the generation, control, and transmission of power by the use of pressurized liquids. Hydraulic topics range through some parts of science and most of engineering modules, and cover concepts such as pipe flow, dam design, fluidics and fluid control circuitry. The principles of hydraulics are in use naturally in the human body within the vascular system and erectile tissue.

An actuator is a component of a machine that produces force, torque, or displacement, usually in a controlled way, when an electrical, pneumatic or hydraulic input is supplied to it in a system. An actuator converts such an input signal into the required form of mechanical energy. It is a type of transducer. In simple terms, it is a "mover".

<span class="mw-page-title-main">Fluid power</span> Use of fluids under pressure to generate, control, and transmit power

Fluid power is the use of fluids under pressure to generate, control, and transmit power. Fluid power is conventionally subdivided into hydraulics and pneumatics. Although steam is also a fluid, steam power is usually classified separately from fluid power. Compressed-air and water-pressure systems were once used to transmit power from a central source to industrial users over extended geographic areas; fluid power systems today are usually within a single building or mobile machine.

A hydraulic accumulator is a pressure storage reservoir in which an incompressible hydraulic fluid is held under pressure that is applied by an external source of mechanical energy. The external source can be an engine, a spring, a raised weight, or a compressed gas. An accumulator enables a hydraulic system to cope with extremes of demand using a less powerful pump, to respond more quickly to a temporary demand, and to smooth out pulsations. It is a type of energy storage device.

For fluid power, a working fluid is a gas or liquid that primarily transfers force, motion, or mechanical energy. In hydraulics, water or hydraulic fluid transfers force between hydraulic components such as hydraulic pumps, hydraulic cylinders, and hydraulic motors that are assembled into hydraulic machinery, hydraulic drive systems, etc. In pneumatics, the working fluid is air or another gas which transfers force between pneumatic components such as compressors, vacuum pumps, pneumatic cylinders, and pneumatic motors. In pneumatic systems, the working gas also stores energy because it is compressible.

<span class="mw-page-title-main">Aerial work platform</span> Truck with mechanical device for lifting people up to high places

An aerial work platform (AWP), also known as an aerial device, elevating work platform (EWP), aerial lift, cherry picker, bucket truck or mobile elevating work platform (MEWP) is a mechanical device used to provide temporary access for people or equipment to inaccessible areas, usually at height. There are distinct types of mechanized access platforms and the individual types may also be known as a "cherry picker", "boom lift" or "scissor lift".

<span class="mw-page-title-main">Lift table</span>

A lift table is a device that employs a scissors mechanism to raise or lower goods and/or persons. Typically lift tables are used to raise large, heavy loads through relatively small distances. Common applications include pallet handling, vehicle loading and work positioning. Lift tables are a recommended way to help reduce incidents of musculoskeletal disorders by correctly re-positioning work at a suitable height for operators. Lift tables lend themselves to being easily adapted to a specific use. They can work in hostile environments, be manufactured in stainless steel and have equipment like conveyors, turn-tables, barriers and gates easily added to their deckplates.

<span class="mw-page-title-main">Hydraulic cylinder</span> Mechanical tool for applying force

A hydraulic cylinder is a mechanical actuator that is used to give a unidirectional force through a unidirectional stroke. It has many applications, notably in construction equipment, manufacturing machinery, elevators, and civil engineering. A hydraulic cylinder is a hydraulic actuator that provides linear motion when hydraulic energy is converted into mechanical movement. It can be likened to a muscle in that, when the hydraulic system of a machine is activated, the cylinder is responsible for providing the motion.

<span class="mw-page-title-main">Pneumatic cylinder</span> Mechanical device with compressed gas

Pneumatic cylinder, also known as air cylinder, is a mechanical device which uses the power of compressed gas to produce a force in a reciprocating linear motion.

<span class="mw-page-title-main">Jack (device)</span> Mechanical lifting device

A jack is a mechanical lifting device used to apply great forces or lift heavy loads. A mechanical jack employs a screw thread for lifting heavy equipment. A hydraulic jack uses hydraulic power. The most common form is a car jack, floor jack or garage jack, which lifts vehicles so that maintenance can be performed. Jacks are usually rated for a maximum lifting capacity. Industrial jacks can be rated for many tons of load.

<span class="mw-page-title-main">Pallet jack</span> Industrial machine

A pallet jack, also known as a pallet truck or pallet pump, is a tool used to lift and move pallets. Pallet jacks are the most basic form of a forklift and are intended to move pallets within a warehouse.

Artificial lift refers to the use of artificial means to increase the flow of liquids, such as crude oil or water, from a production well. Generally this is achieved by the use of a mechanical device inside the well or by decreasing the weight of the hydrostatic column by injecting gas into the liquid some distance down the well. A newer method called Continuous Belt Transportation (CBT) uses an oil absorbing belt to extract from marginal and idle wells. Artificial lift is needed in wells when there is insufficient pressure in the reservoir to lift the produced fluids to the surface, but often used in naturally flowing wells to increase the flow rate above what would flow naturally. The produced fluid can be oil, water or a mix of oil and water, typically mixed with some amount of gas.

<span class="mw-page-title-main">Meillerwagen</span> Motor vehicle

The Meillerwagen was a German World War II trailer used to transport a V-2 rocket from the 'transloading point' of the Technical Troop Area to the launching point, to erect the missile on the Brennstand, and to act as the service gantry for fuelling and launch preparation.

<span class="mw-page-title-main">Balanced-arm lamp</span> Lamp with an adjustable balanced folding arm

A balanced-arm lamp, sometimes called a floating arm lamp, is a lamp with an adjustable folding arm which is constructed such that the force due to gravity is always counteracted by springs, regardless of the position of the arms of the lamp. Many lamp brands, as well as other devices, use this principle.

<span class="mw-page-title-main">Tail lift</span>

A tail lift is a mechanical device permanently installed on the rear of a work truck, van, or lorry, and is designed to facilitate the handling of goods from ground level or a loading dock to the level of the vehicle bed, or vice versa.

<span class="mw-page-title-main">Telescopic cylinder</span> Extending boom design

Telescopic cylinders are a special design of a hydraulic cylinder or pneumatic cylinder as well as pulley system which provide an exceptionally long output travel from a very compact retracted length. Typically the collapsed length of a telescopic cylinder is 20 to 40% of the fully extended length depending on the number of stages. Some pneumatic telescoping units are manufactured with retracted lengths of under 15% of overall extended unit length. This feature is very attractive to machine design engineers when a conventional single stage rod style actuator will not fit in an application to produce the required output stroke.

<span class="mw-page-title-main">Helical band actuator</span>

A helical band actuator, generally known by the trademark Spiralift, is a complex and specialized linear actuator used in stage lifts and material handling lifts. The actuator forms a high-capacity telescoping tubular column.

<span class="mw-page-title-main">Laboratory scissor jack</span>

Laboratory scissor jacks are lifting stages for beakers, flasks, water baths, stirrer, or other lab tools used to elevate equipment height to the user's needs, usually around 5 to 20 cm. It consists of metal pieces connected together in a scissor-like shape between a top and a bottom platform. The metal pieces acting as an adjustable lift using the scissors mechanism in changing its height and also can withstand a wide range of weight.

<span class="mw-page-title-main">Hydraulic jigger</span>

A hydraulic jigger is a hydraulically-powered mechanical winch.

<span class="mw-page-title-main">Necrobotics</span> Practice of using biotic materials as robotic components

Necrobotics is the practice of using biotic materials as robotic components. In July 2022, researchers in the Preston Innovation Lab at Rice University in Houston, Texas published a paper in Advanced Science introducing the concept and demonstrating its capability by repurposing dead spiders as robotic grippers and applying pressurized air to activate their gripping arms.

References

  1. "Scissor Lift Jack Review & Equations". Engineers Edge, LLC. Retrieved January 2, 2012.
  2. "Mechanical engineering concepts: Pantograph or scissor mechanisms". lo.unisa.edu.au. Retrieved 2023-05-16.
  3. "Scissor Lift". Aakash Engineers. Retrieved 2023-05-16.
  4. "Mechanical engineering concepts: Pantograph or scissor mechanisms". lo.unisa.edu.au. Retrieved 2023-05-16.