Seismic analysis

Last updated
First and second modes of building seismic response Modes.png
First and second modes of building seismic response

Seismic analysis is a subset of structural analysis and is the calculation of the response of a building (or nonbuilding) structure to earthquakes. It is part of the process of structural design, earthquake engineering or structural assessment and retrofit (see structural engineering) in regions where earthquakes are prevalent.

Contents

As seen in the figure, a building has the potential to 'wave' back and forth during an earthquake (or even a severe wind storm). This is called the 'fundamental mode', and is the lowest frequency of building response. Most buildings, however, have higher modes of response, which are uniquely activated during earthquakes. The figure just shows the second mode, but there are higher 'shimmy' (abnormal vibration) modes. Nevertheless, the first and second modes tend to cause the most damage in most cases.

The earliest provisions for seismic resistance were the requirement to design for a lateral force equal to a proportion of the building weight (applied at each floor level). This approach was adopted in the appendix of the 1927 Uniform Building Code (UBC), which was used on the west coast of the United States. It later became clear that the dynamic properties of the structure affected the loads generated during an earthquake. In the Los Angeles County Building Code of 1943 a provision to vary the load based on the number of floor levels was adopted (based on research carried out at Caltech in collaboration with Stanford University and the United States Coast and Geodetic Survey, which started in 1937). The concept of "response spectra" was developed in the 1930s, but it wasn't until 1952 that a joint committee of the San Francisco Section of the ASCE and the Structural Engineers Association of Northern California (SEAONC) proposed using the building period (the inverse of the frequency) to determine lateral forces. [1]

The University of California, Berkeley was an early base for computer-based seismic analysis of structures, led by Professor Ray Clough (who coined the term finite element. [2] Students included Ed Wilson, who went on to write the program SAP in 1970, an early "finite element analysis" program. [3]

Earthquake engineering has developed a lot since the early days, and some of the more complex designs now use special earthquake protective elements either just in the foundation (base isolation) or distributed throughout the structure. Analyzing these types of structures requires specialized explicit finite element computer code, which divides time into very small slices and models the actual physics, much like common video games often have "physics engines". Very large and complex buildings can be modeled in this way (such as the Osaka International Convention Center).

Structural analysis methods can be divided into the following five categories.

Equivalent static analysis

This approach defines a series of forces acting on a building to represent the effect of earthquake ground motion, typically defined by a seismic design response spectrum. It assumes that the building responds in its fundamental mode. For this to be true, the building must be low-rise and must not twist significantly when the ground moves. The response is read from a design response spectrum, given the natural frequency of the building (either calculated or defined by the building code). The applicability of this method is extended in many building codes by applying factors to account for higher buildings with some higher modes, and for low levels of twisting. To account for effects due to "yielding" of the structure, many codes apply modification factors that reduce the design forces (e.g. force reduction factors).

Response spectrum analysis

This approach permits the multiple modes of response of a building to be taken into account (in the frequency domain). This is required in many building codes for all except very simple or very complex structures. The response of a structure can be defined as a combination of many special shapes (modes) that in a vibrating string correspond to the "harmonics". Computer analysis can be used to determine these modes for a structure. For each mode, a response is read from the design spectrum, based on the modal frequency and the modal mass, and they are then combined to provide an estimate of the total response of the structure. In this we have to calculate the magnitude of forces in all directions i.e. X, Y & Z and then see the effects on the building. Combination methods include the following:

The result of a response spectrum analysis using the response spectrum from a ground motion is typically different from that which would be calculated directly from a linear dynamic analysis using that ground motion directly, since phase information is lost in the process of generating the response spectrum.

In cases where structures are either too irregular, too tall or of significance to a community in disaster response, the response spectrum approach is no longer appropriate, and more complex analysis is often required, such as non-linear static analysis or dynamic analysis.

Linear dynamic analysis

Static procedures are appropriate when higher mode effects are not significant. This is generally true for short, regular buildings. Therefore, for tall buildings, buildings with torsional irregularities, or non-orthogonal systems, a dynamic procedure is required. In the linear dynamic procedure, the building is modelled as a multi-degree-of-freedom (MDOF) system with a linear elastic stiffness matrix and an equivalent viscous damping matrix.

The seismic input is modelled using either modal spectral analysis or time history analysis but in both cases, the corresponding internal forces and displacements are determined using linear elastic analysis. The advantage of these linear dynamic procedures with respect to linear static procedures is that higher modes can be considered. However, they are based on linear elastic response and hence the applicability decreases with increasing nonlinear behaviour, which is approximated by global force reduction factors.

In linear dynamic analysis, the response of the structure to ground motion is calculated in the time domain, and all phase information is therefore maintained. Only linear properties are assumed. The analytical method can use modal decomposition as a means of reducing the degrees of freedom in the analysis.

Nonlinear static analysis

In general, linear procedures are applicable when the structure is expected to remain nearly elastic for the level of ground motion or when the design results in nearly uniform distribution of nonlinear response throughout the structure. As the performance objective of the structure implies greater inelastic demands, the uncertainty with linear procedures increases to a point that requires a high level of conservatism in demand assumptions and acceptability criteria to avoid unintended performance. Therefore, procedures incorporating inelastic analysis can reduce the uncertainty and conservatism.

This approach is also known as "pushover" analysis. A pattern of forces is applied to a structural model that includes non-linear properties (such as steel yield), and the total force is plotted against a reference displacement to define a capacity curve. This can then be combined with a demand curve (typically in the form of an acceleration-displacement response spectrum (ADRS)). This essentially reduces the problem to a single degree of freedom (SDOF) system.

Nonlinear static procedures use equivalent SDOF structural models and represent seismic ground motion with response spectra. Story drifts and component actions are related subsequently to the global demand parameter by the pushover or capacity curves that are the basis of the non-linear static procedures.

Nonlinear dynamic analysis

Nonlinear dynamic analysis utilizes the combination of ground motion records with a detailed structural model, therefore is capable of producing results with relatively low uncertainty. In nonlinear dynamic analyses, the detailed structural model subjected to a ground-motion record produces estimates of component deformations for each degree of freedom in the model and the modal responses are combined using schemes such as the square-root-sum-of-squares.

In non-linear dynamic analysis, the non-linear properties of the structure are considered as part of a time domain analysis. This approach is the most rigorous, and is required by some building codes for buildings of unusual configuration or of special importance. However, the calculated response can be very sensitive to the characteristics of the individual ground motion used as seismic input; therefore, several analyses are required using different ground motion records to achieve a reliable estimation of the probabilistic distribution of structural response. Since the properties of the seismic response depend on the intensity, or severity, of the seismic shaking, a comprehensive assessment calls for numerous nonlinear dynamic analyses at various levels of intensity to represent different possible earthquake scenarios. This has led to the emergence of methods like the incremental dynamic analysis. [4]

See also

Related Research Articles

NASTRAN is a finite element analysis (FEA) program that was originally developed for NASA in the late 1960s under United States government funding for the aerospace industry. The MacNeal-Schwendler Corporation (MSC) was one of the principal and original developers of the publicly available NASTRAN code. NASTRAN source code is integrated in a number of different software packages, which are distributed by a range of companies.

<span class="mw-page-title-main">Shear wall</span> A wall intended to withstand the lateral load

In structural engineering, a shear wall is a two-dimensional vertical element of a system that is designed to resist in-plane lateral forces, typically wind and seismic loads.

<span class="mw-page-title-main">Response spectrum</span>

A response spectrum is a plot of the peak or steady-state response of a series of oscillators of varying natural frequency, that are forced into motion by the same base vibration or shock. The resulting plot can then be used to pick off the response of any linear system, given its natural frequency of oscillation. One such use is in assessing the peak response of buildings to earthquakes. The science of strong ground motion may use some values from the ground response spectrum for correlation with seismic damage.

Earthquake engineering is an interdisciplinary branch of engineering that designs and analyzes structures, such as buildings and bridges, with earthquakes in mind. Its overall goal is to make such structures more resistant to earthquakes. An earthquake engineer aims to construct structures that will not be damaged in minor shaking and will avoid serious damage or collapse in a major earthquake. A properly engineered structure does not necessarily have to be extremely strong or expensive. It has to be properly designed to withstand the seismic effects while sustaining an acceptable level of damage.

This is an alphabetical list of articles pertaining specifically to structural engineering. For a broad overview of engineering, please see List of engineering topics. For biographies please see List of engineers.

Structural dynamics is a type of structural analysis which covers the behavior of a structure subjected to dynamic loading. Dynamic loads include people, wind, waves, traffic, earthquakes, and blasts. Any structure can be subjected to dynamic loading. Dynamic analysis can be used to find dynamic displacements, time history, and modal analysis.

<span class="mw-page-title-main">Modal analysis</span>

Modal analysis is the study of the dynamic properties of systems in the frequency domain. It consists of mechanically exciting a studied component in such a way to target the modeshapes of the structure, and recording the vibration data with a network of sensors. Examples would include measuring the vibration of a car's body when it is attached to a shaker, or the noise pattern in a room when excited by a loudspeaker.

The goal of modal analysis in structural mechanics is to determine the natural mode shapes and frequencies of an object or structure during free vibration. It is common to use the finite element method (FEM) to perform this analysis because, like other calculations using the FEM, the object being analyzed can have arbitrary shape and the results of the calculations are acceptable. The types of equations which arise from modal analysis are those seen in eigensystems. The physical interpretation of the eigenvalues and eigenvectors which come from solving the system are that they represent the frequencies and corresponding mode shapes. Sometimes, the only desired modes are the lowest frequencies because they can be the most prominent modes at which the object will vibrate, dominating all the higher frequency modes.

The Hilbert–Huang transform (HHT) is a way to decompose a signal into so-called intrinsic mode functions (IMF) along with a trend, and obtain instantaneous frequency data. It is designed to work well for data that is nonstationary and nonlinear. In contrast to other common transforms like the Fourier transform, the HHT is an algorithm that can be applied to a data set, rather than a theoretical tool.

<span class="mw-page-title-main">National Center for Research on Earthquake Engineering</span> Research center in Daan, Taipei, Taiwan

National Center for Research on Earthquake Engineering is an organisation in Da'an District, Taipei, Taiwan.

Ground–structure interaction (SSI) consists of the interaction between soil (ground) and a structure built upon it. It is primarily an exchange of mutual stress, whereby the movement of the ground-structure system is influenced by both the type of ground and the type of structure. This is especially applicable to areas of seismic activity. Various combinations of soil and structure can either amplify or diminish movement and subsequent damage. A building on stiff ground rather than deformable ground will tend to suffer greater damage. A second interaction effect, tied to mechanical properties of soil, is the sinking of foundations, worsened by a seismic event. This phenomenon is called soil liquefaction.

ROHR2 is a pipe stress analysis CAE system from SIGMA Ingenieurgesellschaft mbH, based in Unna, Germany. The software performs both static and dynamic analysis of complex piping and skeletal structures, and runs on Microsoft Windows platform.

The applied element method (AEM) is a numerical analysis used in predicting the continuum and discrete behavior of structures. The modeling method in AEM adopts the concept of discrete cracking allowing it to automatically track structural collapse behavior passing through all stages of loading: elastic, crack initiation and propagation in tension-weak materials, reinforcement yield, element separation, element contact and collision, as well as collision with the ground and adjacent structures.

In geophysics, geology, civil engineering, and related disciplines, seismic noise is a generic name for a relatively persistent vibration of the ground, due to a multitude of causes, that is often a non-interpretable or unwanted component of signals recorded by seismometers.

Incremental dynamic analysis (IDA) is a computational analysis method of earthquake engineering for performing a comprehensive assessment of the behavior of structures under seismic loads. It has been developed to build upon the results of probabilistic seismic hazard analysis in order to estimate the seismic risk faced by a given structure. It can be considered to be the dynamic equivalent of the static pushover analysis.

Mete Avni Sözen was Kettelhut Distinguished Professor of Structural Engineering at Purdue University, Indiana, United States from 1992 to 2018.

<span class="mw-page-title-main">Vibration fatigue</span>

Vibration fatigue is a mechanical engineering term describing material fatigue, caused by forced vibration of random nature. An excited structure responds according to its natural-dynamics modes, which results in a dynamic stress load in the material points. The process of material fatigue is thus governed largely by the shape of the excitation profile and the response it produces. As the profiles of excitation and response are preferably analyzed in the frequency domain it is practical to use fatigue life evaluation methods, that can operate on the data in frequency-domain, s power spectral density (PSD).

The endurance time (ET) method is a dynamic structural analysis procedure for seismic assessment of structures. In this procedure, an intensifying dynamic excitation is used as the loading function. Endurance time method is a time-history based dynamic analysis procedure. An estimate of the structural response at different equivalent seismic intensity levels is obtained in a single response history analysis. This method has applications in seismic assessment of various structural types and in different areas of earthquake engineering.

Unified framework is a general formulation which yields nth - order expressions giving mode shapes and natural frequencies for damaged elastic structures such as rods, beams, plates, and shells. The formulation is applicable to structures with any shape of damage or those having more than one area of damage. The formulation uses the geometric definition of the discontinuity at the damage location and perturbation to modes and natural frequencies of the undamaged structure to determine the mode shapes and natural frequencies of the damaged structure. The geometric discontinuity at the damage location manifests itself in terms of discontinuities in the cross-sectional properties, such as the depth of the structure, the cross-sectional area or the area moment of inertia. The change in cross-sectional properties in turn affects the stiffness and mass distribution. Considering the geometric discontinuity along with the perturbation of modes and natural frequencies, the initial homogeneous differential equation with nonconstant coefficients is changed to a series of non-homogeneous differential equations with constant coefficients. Solutions of this series of differential equations is obtained in this framework.

<span class="mw-page-title-main">Medhat Haroun</span> Egyptian-American expert on earthquake engineering

Medhat Haroun was an Egyptian-American expert on earthquake engineering. He wrote more than 300 technical papers and received the Charles Martin Duke Lifeline Earthquake Engineering Award (2006) and the Walter Huber Civil Engineering Research Prize (1992) from the American Society of Civil Engineers.

References

  1. Bozorgnia, Y, Bertero, V, "Earthquake Engineering: From Engineering Seismology to Performance-Based Engineering", CRC Press, 2004.
  2. "Early Finite Element Research at Berkeley", Wilson, E. and Clough R., presented at the Fifth U.S. National Conference on Computational Mechanics, Aug. 4–6, 1999
  3. "Historic Developments in the Evolution of Earthquake Engineering", illustrated essays by Robert Reitherman, CUREE, 1997, p12.
  4. Vamvatsikos D., Cornell C.A. (2002). Incremental Dynamic Analysis. Earthquake Engineering and Structural Dynamics, 31(3): 491–514.

Other sources: