Selectfluor

Last updated
Selectfluor
F-TEDA-BF4.svg
Selectfluor-from-xtal-3D-balls.png
Names
IUPAC name
1-(Chloromethyl)-4-fluoro-1,4-diazabicyclo[2.2.2]octane-1,4-diium ditetrafluoroborate
Other names
F-TEDA, N-Chloromethyl-N-fluorotriethylenediammonium bis(tetrafluoroborate)
1-Chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate)
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.101.349 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 414-380-4
PubChem CID
UNII
  • InChI=1S/C7H14ClFN2.2BF4/c8-7-10-1-4-11(9,5-2-10)6-3-10;2*2-1(3,4)5/h1-7H2;;/q+2;2*-1 X mark.svgN
    Key: TXRPHPUGYLSHCX-UHFFFAOYSA-N X mark.svgN
  • InChI=1/C7H14ClFN2.2BF4/c8-7-10-1-4-11(9,5-2-10)6-3-10;2*2-1(3,4)5/h1-7H2;;/q+2;2*-1
    Key: TXRPHPUGYLSHCX-UHFFFAOYAI
  • [B-](F)(F)(F)F.[B-](F)(F)(F)F.C1C[N+]2(CC[N+]1(CC2)CCl)F
Properties
C7H14B2ClF9N2
Molar mass 354.26 g/mol
Appearancecolourless solid
Melting point 190 °C (374 °F; 463 K) decomposes >80 °C, exact m.p. is uncertain [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Selectfluor, a trademark of Air Products and Chemicals, is a reagent in chemistry that is used as a fluorine donor. This compound is a derivative of the nucleophillic base DABCO. It is a colourless salt that tolerates air and even water. It has been commercialized for use for electrophilic fluorination. [1]

Contents

Preparation

F-TEDA-BF4 synthesis.svg

Selectfluor is synthesized by the N-alkylation of diazabicyclo[2.2.2]octane (DABCO) with dichloromethane, followed by ion exchange with sodium tetrafluoroborate (replacing the chloride counterion for the tetrafluoroborate). The resulting salt is treated with elemental fluorine and sodium tetrafluoroborate: [2]

The cation is often depicted with one skewed ethylene ((CH2)2) group. In fact, these pairs of CH2 groups are eclipsed so that the cation has idealized C3h symmetry.

Mechanism of fluorination

Electrophilic fluorinating reagents could in principle operate by electron transfer pathways or an SN2 attack at fluorine. This distinction has not been decided. [2] By using a charge-spin separated probe, [3] it was possible to show that the electrophilic fluorination of stilbenes with Selectfluor proceeds through an SET/fluorine atom transfer mechanism. [4]

In certain cases Selectfluor can transfer fluorine to alkyl radicals. [5]

Applications

The conventional source of "electrophilic fluorine", i.e. the equivalent to the superelectrophile F+, is gaseous fluorine, which requires specialised equipment for manipulation. Selectfluor reagent is a salt, the use of which requires only routine procedures. Like F2, the salt delivers the equivalent of F+. It is mainly used in the synthesis of organofluorine compounds: [2]

SelectfluorRxn.png

Specialized applications

Selectfluor reagent also serves as a strong oxidant, a property that is useful in other reactions in organic chemistry. Oxidation of alcohols and phenols. As applied to electrophilic iodination, Selectfluor reagent activates the I–I bond in I2 molecule. [6]

Similar to Selectfluor are N-fluorosulfonimides: [7]

SF4Alt.png

Related Research Articles

<span class="mw-page-title-main">Haloalkane</span> Group of chemical compounds derived from alkanes containing one or more halogens

The haloalkanes are alkanes containing one or more halogen substituents. They are a subset of the general class of halocarbons, although the distinction is not often made. Haloalkanes are widely used commercially. They are used as flame retardants, fire extinguishants, refrigerants, propellants, solvents, and pharmaceuticals. Subsequent to the widespread use in commerce, many halocarbons have also been shown to be serious pollutants and toxins. For example, the chlorofluorocarbons have been shown to lead to ozone depletion. Methyl bromide is a controversial fumigant. Only haloalkanes that contain chlorine, bromine, and iodine are a threat to the ozone layer, but fluorinated volatile haloalkanes in theory may have activity as greenhouse gases. Methyl iodide, a naturally occurring substance, however, does not have ozone-depleting properties and the United States Environmental Protection Agency has designated the compound a non-ozone layer depleter. For more information, see Halomethane. Haloalkane or alkyl halides are the compounds which have the general formula "RX" where R is an alkyl or substituted alkyl group and X is a halogen.

<span class="mw-page-title-main">Alkylation</span> Transfer of an alkyl group from one molecule to another

Alkylation is a chemical reaction that entails transfer of an alkyl group. The alkyl group may be transferred as an alkyl carbocation, a free radical, a carbanion, or a carbene. Alkylating agents are reagents for effecting alkylation. Alkyl groups can also be removed in a process known as dealkylation. Alkylating agents are often classified according to their nucleophilic or electrophilic character. In oil refining contexts, alkylation refers to a particular alkylation of isobutane with olefins. For upgrading of petroleum, alkylation produces a premium blending stock for gasoline. In medicine, alkylation of DNA is used in chemotherapy to damage the DNA of cancer cells. Alkylation is accomplished with the class of drugs called alkylating antineoplastic agents.

In chemistry, halogenation is a chemical reaction that entails the introduction of one or more halogens into a compound. Halide-containing compounds are pervasive, making this type of transformation important, e.g. in the production of polymers, drugs. This kind of conversion is in fact so common that a comprehensive overview is challenging. This article mainly deals with halogenation using elemental halogens. Halides are also commonly introduced using salts of the halides and halogen acids. Many specialized reagents exist for and introducing halogens into diverse substrates, e.g. thionyl chloride.

In organic chemistry, an aryl halide is an aromatic compound in which one or more hydrogen atoms, directly bonded to an aromatic ring are replaced by a halide. The haloarene are different from haloalkanes because they exhibit many differences in methods of preparation and properties. The most important members are the aryl chlorides, but the class of compounds is so broad that there are many derivatives and applications.

<span class="mw-page-title-main">Sulfonic acid</span> Organic compounds with the structure R−S(=O)2−OH

In organic chemistry, sulfonic acid refers to a member of the class of organosulfur compounds with the general formula R−S(=O)2−OH, where R is an organic alkyl or aryl group and the S(=O)2(OH) group a sulfonyl hydroxide. As a substituent, it is known as a sulfo group. A sulfonic acid can be thought of as sulfuric acid with one hydroxyl group replaced by an organic substituent. The parent compound is the parent sulfonic acid, HS(=O)2(OH), a tautomer of sulfurous acid, S(=O)(OH)2. Salts or esters of sulfonic acids are called sulfonates.

<span class="mw-page-title-main">DABCO</span> Chemical compound

DABCO (1,4-diazabicyclo[2.2.2]octane), also known as triethylenediamine or TEDA, is a bicyclic organic compound with the formula N2(C2H4)3. This colorless solid is a highly nucleophilic tertiary amine base, which is used as a catalyst and reagent in polymerization and organic synthesis.

The Sandmeyer reaction is a chemical reaction used to synthesize aryl halides from aryl diazonium salts using copper salts as reagents or catalysts. It is an example of a radical-nucleophilic aromatic substitution. The Sandmeyer reaction provides a method through which one can perform unique transformations on benzene, such as halogenation, cyanation, trifluoromethylation, and hydroxylation.

<span class="mw-page-title-main">Tetrafluoroborate</span> Anion

Tetrafluoroborate is the anion BF
4
. This tetrahedral species is isoelectronic with tetrafluoroberyllate (BeF2−
4
), tetrafluoromethane (CF4), and tetrafluoroammonium (NF+
4
) and is valence isoelectronic with many stable and important species including the perchlorate anion, ClO
4
, which is used in similar ways in the laboratory. It arises by the reaction of fluoride salts with the Lewis acid BF3, treatment of tetrafluoroboric acid with base, or by treatment of boric acid with hydrofluoric acid.

<span class="mw-page-title-main">Xenon difluoride</span> Chemical compound

Xenon difluoride is a powerful fluorinating agent with the chemical formula XeF
2
, and one of the most stable xenon compounds. Like most covalent inorganic fluorides it is moisture-sensitive. It decomposes on contact with water vapor, but is otherwise stable in storage. Xenon difluoride is a dense, colourless crystalline solid.

Bromine compounds are compounds containing the element bromine (Br). These compounds usually form the -1, +1, +3 and +5 oxidation states. Bromine is intermediate in reactivity between chlorine and iodine, and is one of the most reactive elements. Bond energies to bromine tend to be lower than those to chlorine but higher than those to iodine, and bromine is a weaker oxidising agent than chlorine but a stronger one than iodine. This can be seen from the standard electrode potentials of the X2/X couples (F, +2.866 V; Cl, +1.395 V; Br, +1.087 V; I, +0.615 V; At, approximately +0.3 V). Bromination often leads to higher oxidation states than iodination but lower or equal oxidation states to chlorination. Bromine tends to react with compounds including M–M, M–H, or M–C bonds to form M–Br bonds.

Iodine compounds are compounds containing the element iodine. Iodine can form compounds using multiple oxidation states. Iodine is quite reactive, but it is much less reactive than the other halogens. For example, while chlorine gas will halogenate carbon monoxide, nitric oxide, and sulfur dioxide, iodine will not do so. Furthermore, iodination of metals tends to result in lower oxidation states than chlorination or bromination; for example, rhenium metal reacts with chlorine to form rhenium hexachloride, but with bromine it forms only rhenium pentabromide and iodine can achieve only rhenium tetraiodide. By the same token, however, since iodine has the lowest ionisation energy among the halogens and is the most easily oxidised of them, it has a more significant cationic chemistry and its higher oxidation states are rather more stable than those of bromine and chlorine, for example in iodine heptafluoride.

Organofluorine chemistry describes the chemistry of organofluorine compounds, organic compounds that contain a carbon–fluorine bond. Organofluorine compounds find diverse applications ranging from oil and water repellents to pharmaceuticals, refrigerants, and reagents in catalysis. In addition to these applications, some organofluorine compounds are pollutants because of their contributions to ozone depletion, global warming, bioaccumulation, and toxicity. The area of organofluorine chemistry often requires special techniques associated with the handling of fluorinating agents.

The Balz–Schiemann reaction is a chemical reaction in which a primary aromatic amine is transformed to an aryl fluoride via a diazonium tetrafluoroborate intermediate. This reaction is a traditional route to fluorobenzene and some related derivatives, including 4-fluorobenzoic acid.

<span class="mw-page-title-main">Diethylaminosulfur trifluoride</span> Chemical compound

Diethylaminosulfur trifluoride (DAST) is the organosulfur compound with the formula Et2NSF3. This liquid is a fluorinating reagent used for the synthesis of organofluorine compounds. The compound is colourless; older samples assume an orange colour.

Organobromine chemistry is the study of the synthesis and properties of organobromine compounds, also called organobromides, which are organic compounds that contain carbon bonded to bromine. The most pervasive is the naturally produced bromomethane.

Unlike its lighter congeners, the halogen iodine forms a number of stable organic compounds, in which iodine exhibits higher formal oxidation states than -1 or coordination number exceeding 1. These are the hypervalent organoiodines, often called iodanes after the IUPAC rule used to name them.

<span class="mw-page-title-main">Tetrafluoroammonium</span> Chemical compound

The tetrafluoroammonium cation is a positively charged polyatomic ion with chemical formula NF+
4
. It is equivalent to the ammonium ion where the hydrogen atoms surrounding the central nitrogen atom have been replaced by fluorine. Tetrafluoroammonium ion is isoelectronic with tetrafluoromethane CF
4
, trifluoramine oxide ONF
3
and the tetrafluoroborate BF
4
anion.

Fluorination by sulfur tetrafluoride produces organofluorine compounds from oxygen-containing organic functional groups using sulfur tetrafluoride. The reaction has broad scope, and SF4 is an inexpensive reagent. It is however hazardous gas whose handling requires specialized apparatus. Thus, for many laboratory scale fluorinations diethylaminosulfur trifluoride ("DAST") is used instead.

<span class="mw-page-title-main">Electrophilic fluorination</span>

Electrophilic fluorination is the combination of a carbon-centered nucleophile with an electrophilic source of fluorine to afford organofluorine compounds. Although elemental fluorine and reagents incorporating an oxygen-fluorine bond can be used for this purpose, they have largely been replaced by reagents containing a nitrogen-fluorine bond.

Radical fluorination is a type of fluorination reaction, complementary to nucleophilic and electrophilic approaches. It involves the reaction of an independently generated carbon-centered radical with an atomic fluorine source and yields an organofluorine compound.

References

  1. 1 2 Banks, R. Eric; Murtagh, Vincent; An, Ilhwan; Maleczka, Robert E. (2007). "1-(Chloromethyl)-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane Bis(tetrafluoroborate)". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rc116.pub2. ISBN   978-0471936237.
  2. 1 2 3 Nyffeler, Paul T.; Durón, Sergio Gonzalez; Burkart, Michael D.; Vincent, Stéphane P.; Wong, Chi-Huey (2005). "Selectfluor: Mechanistic Insight and Applications". Angewandte Chemie International Edition. 44 (2): 192–212. doi: 10.1002/anie.200400648 . PMID   15578736.
  3. Tojo, Sachiko; Morishima, Kazuhiro; Ishida, Akito; Majima, Tetsuro; Takamuku, Setsuo (1995). "Remarkable Enhancements of Isomerization and Oxidation of Radical Cations of Stilbene Derivatives Induced by Charge-Spin Separation". The Journal of Organic Chemistry. 60 (15): 4684–4685. doi:10.1021/jo00120a004. ISSN   0022-3263.
  4. Brandt, Jochen R.; Lee, Eunsung; Boursalian, Gregory B.; Ritter, Tobias (2014). "Mechanism of electrophilic fluorination with Pd(iv): fluoride capture and subsequent oxidative fluoride transfer". Chem. Sci. 5 (1): 169–179. doi:10.1039/C3SC52367E. ISSN   2041-6520. PMC   3870902 . PMID   24376910.
  5. Paquin, J.-F.; Sammis, G.; Chatalova-Sazepin, C.; Hemelaere, R. (2015). "Recent advances in radical fluorination". Synthesis . 47 (17): 2554–2569. doi:10.1055/s-0034-1378824. S2CID   196807570.
  6. Stavber, Stojan; Kralj, Petra; Zupan, Marko (2002-08-01). "Progressive Direct Iodination of Sterically Hindered Alkyl Substituted Benzenes". Synthesis. 2002 (11): 1513–1518. doi:10.1055/s-2002-33339. ISSN   0039-7881.
  7. Baudoux, Jérôme; Cahard, Dominique (2008). "Electrophilic Fluorination with N–F Reagents". Organic Reactions. pp. 1–326. doi:10.1002/0471264180.or069.02. ISBN   978-0-471-26418-7.

Patents