Semi-continuity

Last updated

In mathematical analysis, semicontinuity (or semi-continuity) is a property of extended real-valued functions that is weaker than continuity. An extended real-valued function is upper (respectively, lower) semicontinuous at a point if, roughly speaking, the function values for arguments near are not much higher (respectively, lower) than

Contents

A function is continuous if and only if it is both upper and lower semicontinuous. If we take a continuous function and increase its value at a certain point to for some , then the result is upper semicontinuous; if we decrease its value to then the result is lower semicontinuous.

An upper semicontinuous function that is not lower semicontinuous. The solid blue dot indicates
f
(
x
0
)
.
{\displaystyle f\left(x_{0}\right).} Upper semi.svg
An upper semicontinuous function that is not lower semicontinuous. The solid blue dot indicates
A lower semicontinuous function that is not upper semicontinuous. The solid blue dot indicates
f
(
x
0
)
.
{\displaystyle f\left(x_{0}\right).} Lower semi.svg
A lower semicontinuous function that is not upper semicontinuous. The solid blue dot indicates

The notion of upper and lower semicontinuous function was first introduced and studied by René Baire in his thesis in 1899. [1]

Definitions

Assume throughout that is a topological space and is a function with values in the extended real numbers .

Upper semicontinuity

A function is called upper semicontinuous at a point if for every real there exists a neighborhood of such that for all . [2] Equivalently, is upper semicontinuous at if and only if

where lim sup is the limit superior of the function at the point .

A function is called upper semicontinuous if it satisfies any of the following equivalent conditions: [2]

(1) The function is upper semicontinuous at every point of its domain.
(2) All sets with are open in , where .
(3) All superlevel sets with are closed in .
(4) The hypograph is closed in .
(5) The function is continuous when the codomain is given the left order topology. This is just a restatement of condition (2) since the left order topology is generated by all the intervals .

Lower semicontinuity

A function is called lower semicontinuous at a point if for every real there exists a neighborhood of such that for all . Equivalently, is lower semicontinuous at if and only if

where is the limit inferior of the function at point .

A function is called lower semicontinuous if it satisfies any of the following equivalent conditions:

(1) The function is lower semicontinuous at every point of its domain.
(2) All sets with are open in , where .
(3) All sublevel sets with are closed in .
(4) The epigraph is closed in .
(5) The function is continuous when the codomain is given the right order topology. This is just a restatement of condition (2) since the right order topology is generated by all the intervals .

Examples

Consider the function piecewise defined by:

This function is upper semicontinuous at but not lower semicontinuous.

The floor function which returns the greatest integer less than or equal to a given real number is everywhere upper semicontinuous. Similarly, the ceiling function is lower semicontinuous.

Upper and lower semicontinuity bear no relation to continuity from the left or from the right for functions of a real variable. Semicontinuity is defined in terms of an ordering in the range of the functions, not in the domain. [3] For example the function

is upper semicontinuous at while the function limits from the left or right at zero do not even exist.

If is a Euclidean space (or more generally, a metric space) and is the space of curves in (with the supremum distance ), then the length functional which assigns to each curve its length is lower semicontinuous. [4] As an example, consider approximating the unit square diagonal by a staircase from below. The staircase always has length 2, while the diagonal line has only length .

Let be a measure space and let denote the set of positive measurable functions endowed with the topology of convergence in measure with respect to Then by Fatou's lemma the integral, seen as an operator from to is lower semicontinuous.

Properties

Unless specified otherwise, all functions below are from a topological space to the extended real numbers Several of the results hold for semicontinuity at a specific point, but for brevity they are only stated for semicontinuity over the whole domain.

In particular, the limit of a monotone increasing sequence of continuous functions is lower semicontinuous. (The Theorem of Baire below provides a partial converse.) The limit function will only be lower semicontinuous in general, not continuous. An example is given by the functions defined for for
Likewise, the infimum of an arbitrary family of upper semicontinuous functions is upper semicontinuous. And the limit of a monotone decreasing sequence of continuous functions is upper semicontinuous.
And every upper semicontinuous function is the limit of a monotone decreasing sequence of extended real-valued continuous functions on ; if does not take the value the continuous functions can be taken to be real-valued.
(Proof for the upper semicontinuous case: By condition (5) in the definition, is continuous when is given the left order topology. So its image is compact in that topology. And the compact sets in that topology are exactly the sets with a maximum. For an alternative proof, see the article on the extreme value theorem.)

See also

Notes

  1. In the context of convex analysis, the characteristic function of a set is defined differently, as if and if . With that definition, the characteristic function of any closed set is lower semicontinuous, and the characteristic function of any open set is upper semicontinuous.
  2. The result was proved by René Baire in 1904 for real-valued function defined on . It was extended to metric spaces by Hans Hahn in 1917, and Hing Tong showed in 1952 that the most general class of spaces where the theorem holds is the class of perfectly normal spaces. (See Engelking, Exercise 1.7.15(c), p. 62 for details and specific references.)

Related Research Articles

In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is not continuous. Until the 19th century, mathematicians largely relied on intuitive notions of continuity and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity.

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

In topology, the Tietze extension theorem states that any real-valued, continuous function on a closed subset of a normal topological space can be extended to the entire space, preserving boundedness if necessary.

In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz.

In mathematics, the extended real number system is obtained from the real number system by adding two infinity elements: and where the infinities are treated as actual numbers. It is useful in describing the algebra on infinities and the various limiting behaviors in calculus and mathematical analysis, especially in the theory of measure and integration. The extended real number system is denoted or or It is the Dedekind–MacNeille completion of the real numbers.

Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.

In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.

In mathematics, the uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm.

In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

In the field of mathematical analysis for the calculus of variations, Γ-convergence (Gamma-convergence) is a notion of convergence for functionals. It was introduced by Ennio De Giorgi.

In mathematics, subharmonic and superharmonic functions are important classes of functions used extensively in partial differential equations, complex analysis and potential theory.

In mathematics, linear maps form an important class of "simple" functions which preserve the algebraic structure of linear spaces and are often used as approximations to more general functions. If the spaces involved are also topological spaces, then it makes sense to ask whether all linear maps are continuous. It turns out that for maps defined on infinite-dimensional topological vector spaces, the answer is generally no: there exist discontinuous linear maps. If the domain of definition is complete, it is trickier; such maps can be proven to exist, but the proof relies on the axiom of choice and does not provide an explicit example.

In mathematics, Tonelli's theorem in functional analysis is a fundamental result on the weak lower semicontinuity of nonlinear functionals on Lp spaces. As such, it has major implications for functional analysis and the calculus of variations. Roughly, it shows that weak lower semicontinuity for integral functionals is equivalent to convexity of the integral kernel. The result is attributed to the Italian mathematician Leonida Tonelli.

In functional analysis, the dual norm is a measure of size for a continuous linear function defined on a normed vector space.

In topology and related areas of mathematics, a subset A of a topological space X is said to be dense in X if every point of X either belongs to A or else is arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it. Formally, is dense in if the smallest closed subset of containing is itself.

In mathematics, the direct method in the calculus of variations is a general method for constructing a proof of the existence of a minimizer for a given functional, introduced by Stanisław Zaremba and David Hilbert around 1900. The method relies on methods of functional analysis and topology. As well as being used to prove the existence of a solution, direct methods may be used to compute the solution to desired accuracy.

The maximum theorem provides conditions for the continuity of an optimized function and the set of its maximizers with respect to its parameters. The statement was first proven by Claude Berge in 1959. The theorem is primarily used in mathematical economics and optimal control.

This is a glossary for the terminology in a mathematical field of functional analysis.

In mathematical analysis, the spaces of test functions and distributions are topological vector spaces (TVSs) that are used in the definition and application of distributions. Test functions are usually infinitely differentiable complex-valued functions on a non-empty open subset that have compact support. The space of all test functions, denoted by is endowed with a certain topology, called the canonical LF-topology, that makes into a complete Hausdorff locally convex TVS. The strong dual space of is called the space of distributions on and is denoted by where the "" subscript indicates that the continuous dual space of denoted by is endowed with the strong dual topology.

References

  1. Verry, Matthieu. "Histoire des mathématiques - René Baire".
  2. 1 2 Stromberg, p. 132, Exercise 4
  3. Willard, p. 49, problem 7K
  4. Giaquinta, Mariano (2007). Mathematical analysis : linear and metric structures and continuity. Giuseppe Modica (1 ed.). Boston: Birkhäuser. Theorem 11.3, p.396. ISBN   978-0-8176-4514-4. OCLC   213079540.
  5. Puterman, Martin L. (2005). Markov Decision Processes Discrete Stochastic Dynamic Programming . Wiley-Interscience. pp.  602. ISBN   978-0-471-72782-8.
  6. Moore, James C. (1999). Mathematical methods for economic theory . Berlin: Springer. p.  143. ISBN   9783540662358.
  7. "To show that the supremum of any collection of lower semicontinuous functions is lower semicontinuous".
  8. Stromberg, p. 132, Exercise 4(g)
  9. "Show that lower semicontinuous function is the supremum of an increasing sequence of continuous functions".

Bibliography