Sequestosome 1

Last updated
SQSTM1
Protein SQSTM1 PDB 1q02.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases SQSTM1 , A170, OSIL, PDB3, ZIP3, p60, p62, p62B, FTDALS3, Sequestosome 1, NADGP, DMRV
External IDs OMIM: 601530 MGI: 107931 HomoloGene: 31202 GeneCards: SQSTM1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001142298
NM_001142299
NM_003900

NM_001290769
NM_011018

RefSeq (protein)

NP_001135770
NP_001135771
NP_003891

NP_001277698
NP_035148

Location (UCSC) Chr 5: 179.81 – 179.84 Mb Chr 11: 50.09 – 50.1 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Sequestosome-1 is a protein that in humans is encoded by the SQSTM1 gene. [5] [6] [7] Also known as the ubiquitin-binding protein p62, [8] it is an autophagosome cargo protein that targets other proteins that bind to it for selective autophagy. By interacting with GATA4 and targeting it for degradation, it can inhibit GATA-4 associated senescence and senescence-associated secretory phenotype. [9]

Contents

Model organisms

Model organisms have been used in the study of SQSTM1 function. A conditional knockout mouse line, called Sqstm1tm1a(KOMP)Wtsi [15] [16] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists. [17] [18] [19]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion. [13] [20] Twenty two tests were carried out on homozygous mutant mice and one significant abnormality was observed: females had abnormal complete blood count parameters, including an increased red blood cell distribution width and increased mean platelet volume. [13]

Interactions

Sequestosome 1 has been shown to interact with:

Related Research Articles

<span class="mw-page-title-main">RANK</span> Mammalian protein found in Homo sapiens

Receptor activator of nuclear factor κ B (RANK), also known as TRANCE receptor or TNFRSF11A, is a member of the tumor necrosis factor receptor (TNFR) molecular sub-family. RANK is the receptor for RANK-Ligand (RANKL) and part of the RANK/RANKL/OPG signaling pathway that regulates osteoclast differentiation and activation. It is associated with bone remodeling and repair, immune cell function, lymph node development, thermal regulation, and mammary gland development. Osteoprotegerin (OPG) is a decoy receptor for RANKL, and regulates the stimulation of the RANK signaling pathway by competing for RANKL. The cytoplasmic domain of RANK binds TRAFs 1, 2, 3, 5, and 6 which transmit signals to downstream targets such as NF-κB and JNK.

<span class="mw-page-title-main">Tropomyosin receptor kinase A</span> Protein-coding gene in the species Homo sapiens

Tropomyosin receptor kinase A (TrkA), also known as high affinity nerve growth factor receptor, neurotrophic tyrosine kinase receptor type 1, or TRK1-transforming tyrosine kinase protein is a protein that in humans is encoded by the NTRK1 gene.

<span class="mw-page-title-main">Protein kinase C zeta type</span>

Protein kinase C, zeta (PKCζ), also known as PRKCZ, is a protein in humans that is encoded by the PRKCZ gene. The PRKCZ gene encodes at least two alternative transcripts, the full-length PKCζ and an N-terminal truncated form PKMζ. PKMζ is thought to be responsible for maintaining long-term memories in the brain. The importance of PKCζ in the creation and maintenance of long-term potentiation was first described by Todd Sacktor and his colleagues at the SUNY Downstate Medical Center in 1993.

<span class="mw-page-title-main">TRAF6</span> Protein-coding gene in the species Homo sapiens

TRAF6 is a TRAF human protein.

<span class="mw-page-title-main">TRAF2</span> Protein-coding gene in humans

TNF receptor-associated factor 2 is a protein that in humans is encoded by the TRAF2 gene.

<span class="mw-page-title-main">TRADD</span> Protein-coding gene in the species Homo sapiens

Tumor necrosis factor receptor type 1-associated DEATH domain protein is a protein that in humans is encoded by the TRADD gene.

<span class="mw-page-title-main">IκBα</span> Protein-coding gene in the species Homo sapiens

IκBα is one member of a family of cellular proteins that function to inhibit the NF-κB transcription factor. IκBα inhibits NF-κB by masking the nuclear localization signals (NLS) of NF-κB proteins and keeping them sequestered in an inactive state in the cytoplasm. In addition, IκBα blocks the ability of NF-κB transcription factors to bind to DNA, which is required for NF-κB's proper functioning.

<span class="mw-page-title-main">MAPK8</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase 8 is a ubiquitous enzyme that in humans is encoded by the MAPK8 gene.

<span class="mw-page-title-main">MAP3K7</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 7 (MAP3K7), also known as TAK1, is an enzyme that in humans is encoded by the MAP3K7 gene.

<span class="mw-page-title-main">PRKCI</span> Protein-coding gene in the species Homo sapiens

Protein kinase C iota type is an enzyme that in humans is encoded by the PRKCI gene.

<span class="mw-page-title-main">BCL10</span> Protein-coding gene in the species Homo sapiens

B-cell lymphoma/leukemia 10 is a protein that in humans is encoded by the BCL10 gene. Like BCL2, BCL3, BCL5, BCL6, BCL7A, and BCL9, it has clinical significance in lymphoma.

<span class="mw-page-title-main">TNFAIP3</span> Protein-coding gene in the species Homo sapiens

Tumor necrosis factor, alpha-induced protein 3 or A20 is a protein that in humans is encoded by the TNFAIP3 gene.

<span class="mw-page-title-main">RIPK2</span> Protein-coding gene in humans

Receptor-interacting serine/threonine-protein kinase 2 is an enzyme that in humans is encoded by the RIPK2 gene.

<span class="mw-page-title-main">MAP3K14</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 14 also known as NF-kappa-B-inducing kinase (NIK) is an enzyme that in humans is encoded by the MAP3K14 gene.

<span class="mw-page-title-main">MAP3K7IP2</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 7-interacting protein 2 is an enzyme that in humans is encoded by the MAP3K7IP2 gene.

<span class="mw-page-title-main">TAB1</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 7-interacting protein 1 is an enzyme that in humans is encoded by the TAB1 gene.

<span class="mw-page-title-main">MAP2K5</span> Protein-coding gene in the species Homo sapiens

Dual specificity mitogen-activated protein kinase kinase 5 is an enzyme that in humans is encoded by the MAP2K5 gene.

<span class="mw-page-title-main">SMG1</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein kinase SMG1 is an enzyme that in humans is encoded by the SMG1 gene. SMG1 belongs to the phosphatidylinositol 3-kinase-related kinase protein family.

<span class="mw-page-title-main">MAST2</span> Protein-coding gene in the species Homo sapiens

Microtubule-associated serine/threonine-protein kinase 2 is an enzyme that in humans is encoded by the MAST2 gene. The protein encoded by this gene controls TRAF6 and NF-kappaB activity.

<span class="mw-page-title-main">BIM-1</span> Biological protein kinase C inhibitor

BIM-1 and the related compounds BIM-2, BIM-3, and BIM-8 are bisindolylmaleimide-based protein kinase C (PKC) inhibitors. These inhibitors also inhibit PDK1 explaining the higher inhibitory potential of LY33331 compared to the other BIM compounds a bisindolylmaleimide inhibitor toward PDK1.

References

  1. 1 2 3 ENSG00000284099 GRCh38: Ensembl release 89: ENSG00000161011, ENSG00000284099 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000015837 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Joung I, Strominger JL, Shin J (July 1996). "Molecular cloning of a phosphotyrosine-independent ligand of the p56lck SH2 domain". Proc Natl Acad Sci U S A. 93 (12): 5991–5. Bibcode:1996PNAS...93.5991J. doi: 10.1073/pnas.93.12.5991 . PMC   39176 . PMID   8650207.
  6. Devergne O, Hummel M, Koeppen H, Le Beau MM, Nathanson EC, Kieff E, Birkenbach M (February 1996). "A novel interleukin-12 p40-related protein induced by latent Epstein-Barr virus infection in B lymphocytes". J Virol. 70 (2): 1143–53. doi:10.1128/JVI.70.2.1143-1153.1996. PMC   189923 . PMID   8551575.
  7. "Entrez Gene: SQSTM1 sequestosome 1".
  8. Online Mendelian Inheritance in Man (OMIM): 601530
  9. Cassidy LD, Narita M (2015). "GATA get a hold on senescence" (PDF). Science. 349 (6255): 1448–9. Bibcode:2015Sci...349.1448C. doi:10.1126/science.aad2501. PMID   26404812. S2CID   35805331.
  10. "Haematology data for Sqstm1". Wellcome Trust Sanger Institute.
  11. "Salmonella infection data for Sqstm1". Wellcome Trust Sanger Institute.
  12. "Citrobacter infection data for Sqstm1". Wellcome Trust Sanger Institute.
  13. 1 2 3 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. S2CID   85911512.
  14. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  15. "International Knockout Mouse Consortium".
  16. "Mouse Genome Informatics".
  17. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC   3572410 . PMID   21677750.
  18. Dolgin E (2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID   21677718.
  19. Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell. 128 (1): 9–13. doi: 10.1016/j.cell.2006.12.018 . PMID   17218247. S2CID   18872015.
  20. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi: 10.1186/gb-2011-12-6-224 . PMC   3218837 . PMID   21722353.
  21. Shvets E, Fass E, Scherz-Shouval R, Elazar Z (August 2008). "The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes". J. Cell Sci. 121 (Pt 16): 2685–95. doi:10.1242/jcs.026005. PMID   18653543. S2CID   2782335.
  22. Sanchez P, De Carcer G, Sandoval IV, Moscat J, Diaz-Meco MT (May 1998). "Localization of atypical protein kinase C isoforms into lysosome-targeted endosomes through interaction with p62". Mol. Cell. Biol. 18 (5): 3069–80. doi:10.1128/mcb.18.5.3069. PMC   110686 . PMID   9566925.
  23. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. Bibcode:2005Natur.437.1173R. doi:10.1038/nature04209. PMID   16189514. S2CID   4427026.
  24. Sanz L, Sanchez P, Lallena MJ, Diaz-Meco MT, Moscat J (1999). "The interaction of p62 with RIP links the atypical PKCs to NF-kappaB activation". EMBO J. 18 (11): 3044–53. doi:10.1093/emboj/18.11.3044. PMC   1171386 . PMID   10356400.
  25. Sanz L, Diaz-Meco MT, Nakano H, Moscat J (April 2000). "The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway". EMBO J. 19 (7): 1576–86. doi:10.1093/emboj/19.7.1576. PMC   310227 . PMID   10747026.
  26. Wooten MW, Seibenhener ML, Mamidipudi V, Diaz-Meco MT, Barker PA, Moscat J (March 2001). "The atypical protein kinase C-interacting protein p62 is a scaffold for NF-kappaB activation by nerve growth factor". J. Biol. Chem. 276 (11): 7709–12. doi: 10.1074/jbc.C000869200 . PMID   11244088.
  27. 1 2 Geetha T, Wooten MW (February 2003). "Association of the atypical protein kinase C-interacting protein p62/ZIP with nerve growth factor receptor TrkA regulates receptor trafficking and Erk5 signaling". J. Biol. Chem. 278 (7): 4730–9. doi: 10.1074/jbc.M208468200 . PMID   12471037.
  28. 1 2 Jadhav T, Geetha T, Jiang J, Wooten MW (2008). "Identification of a consensus site for TRAF6/p62 polyubiquitination". Biochem. Biophys. Res. Commun. 371 (3): 521–4. doi:10.1016/j.bbrc.2008.04.138. PMC   2474794 . PMID   18457658.
  29. Wooten MW, Geetha T, Babu JR, Seibenhener ML, Peng J, Cox N, Diaz-Meco MT, Moscat J (March 2008). "Essential role of sequestosome 1/p62 in regulating accumulation of Lys63-ubiquitinated proteins". J. Biol. Chem. 283 (11): 6783–9. doi: 10.1074/jbc.M709496200 . PMID   18174161.
  30. Feng, Lifeng et al. “Tamoxifen activates Nrf2-dependent SQSTM1 transcription to promote endometrial hyperplasia” Theranostics vol. 7,7 1890-1900. 10 Apr. 2017, doi:10.7150/thno.19135

Further reading