Sergei V. Kalinin

Last updated
Sergei V. Kalinin
Sergei V Kalinin.jpeg
Born
Sergei Vasilyevich Kalinin

Alma mater Moscow State University M.S. (1998)
University of Pennsylvania Ph.D. (2002)
AwardsBlavatnik Award (2018); RMS medal for Scanning Probe Microscopy (2015); Presidential Early Career Award for Scientists and Engineers (PECASE) (2009); IEEE-UFFC Ferroelectrics Young Investigator Award (2010); Burton medal of Microscopy Society of America (2010); ISIF Young Investigator Award (2009); American Vacuum Society Peter Mark Memorial Award (2008); 3 R&D100 Awards (2008, 2010, and 2016); Ross Coffin Award (2003); Robert L. Coble Award of American Ceramics Society (2009)
Scientific career
Fields Big data, Machine learning, Atomic Fabrication, Artificial Intelligence, Scanning Transmission Electron Microscopy, Scanning probe microscopy, Piezoresponse Force Microscopy, Nanoscale Electromechanics
Institutions Oak Ridge National Laboratory, University of Tennessee - Knoxville
Thesis Nanoscale electric phenomena at oxide surfaces and interfaces by scanning probe microscopy  (2002)

Sergei V. Kalinin is the Weston Fulton Professor at the Department of Materials Science and Engineering at the University of Tennessee-Knoxville. [1]

Education

Kalinin graduated with M.S. from Department of Materials Science, Moscow State University, Russia in 1998. [2] He received his Ph.D. in Materials Science and Engineering from the University of Pennsylvania in 2002 under Prof. Dawn Bonnell. [3]

Career

He has been a research staff member at ORNL since October 2004 (Senior since 2007, Distinguished since 2013, Corporate Fellow since 2020 and Group Leader at CNMS). [4] Previously he was Theme leader for Electronic and Ionic Functionality at CNMS, ORNL (2007– 2015). He was a recipient of Eugene P. Wigner Fellowship (2002 - 2004).

He became Joint faculty at the Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville in December 2010. He also became adjunct professor at Sung Kyun Kwan University in January 2013.

From March 2022 to February 2023 he worked at Amazon as special projects principal scientist. After his assignment at Amazon he resumed his role at University of Tennessee, Knoxville as the Weston Fulton Chair Professor in the department of Materials Science and Engineering. [1]

Research

Big data in physics and atom by atom fabrication

Kalinin's research applies machine learning and artificial intelligence to nanometer scale and atomically resolved imaging data, aiming to extract physics of atomic, molecular, and mesoscale interactions and enable real-time feedback for controlled matter modification, patterning, and atom by atom fabrication.[ citation needed ] The research builds on modern electron and scanning probe microscopies, which provide high-veracity information on the structure and functionalities of solids. Kalinin has developed frameworks for information capture, crowd-sourced analysis, and physics extraction from imaging tools. His research aims to extract simple physical parameters from imaging data and establish causative relationships between materials properties and functionalities. Kalinin and colleagues believe that electron microscopy can transition from a purely imaging tool to a new paradigm of atomic matter control and quantum computing, enabled via atom by atom fabrication by electron beams.

Kalinin has proposed the concept of Atomic Forge, the use of the sub-atomically focused beam of Scanning Transmission Electron Microscopy for atomic manipulation and atom by atom assembly. [5]

Nanoelectromechanics and piezoresponse force microscopy

Kalinin has contributed to the field of nanoscale electromechanics, [6] exploring the coupling between electrical and mechanical phenomena on the nanoscale. He has made significant contributions to piezoresponse force microscopy (PFM), including the first PFM imaging in liquid and vacuum, PFM of biological tissues, and the observation of nanoscale ferroelectricity in molecular systems. [7] [8] [9] He has also pioneered the development of spectroscopic imaging modes for PFM, allowing visualization of polarization switching on the sub-10 nanometer level and establishing the resolution and contrast transfer mechanisms of domain walls and spectroscopy. Kalinin led the team that pioneered the BE principle for force-based scanning probe microscopes, enabling quantitative capture of probe-material interactions. His multidimensional, multimodal spectroscopies have enabled quantitative studies of polarization dynamics and mechanical effects accompanying switching in ferroelectrics. Kalinin's work has revealed the critical role of electrochemical phenomena on ferroelectric surfaces and the emergence of chaos and intermittency during domain switching and shape symmetry breaking. His recent work includes the development of the basic theory and phase-field formulation for domain evolution and the exploration of the coupled electrochemical-ferroelectric states.[ citation needed ]

Awards and honors

He is a recipient of:

He was named a fellow of Royal Society of Chemistry (2024), AAAS (2024), Materials Research Society (2017), Foresight Institute (2017), MRS (2016), AVS (2015), [10] APS (2015), [11] and a senior member (2015) and Fellow (2017) of IEEE.

He is a member of editorial boards for Nanotechnology , Journal of Applied Physics/ Applied Physics Letters , and Nature Partner Journal Computational Materials.

Related Research Articles

<span class="mw-page-title-main">Atomic force microscopy</span> Type of microscopy

Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the optical diffraction limit.

Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. SPM was founded in 1981, with the invention of the scanning tunneling microscope, an instrument for imaging surfaces at the atomic level. The first successful scanning tunneling microscope experiment was done by Gerd Binnig and Heinrich Rohrer. The key to their success was using a feedback loop to regulate gap distance between the sample and the probe.

Scanning voltage microscopy (SVM), sometimes also called nanopotentiometry, is a scientific experimental technique based on atomic force microscopy. A conductive probe, usually only a few nanometers wide at the tip, is placed in full contact with an operational electronic or optoelectronic sample. By connecting the probe to a high-impedance voltmeter and rastering over the sample's surface, a map of the electric potential can be acquired. SVM is generally nondestructive to the sample although some damage may occur to the sample or the probe if the pressure required to maintain good electrical contact is too high. If the input impedance of the voltmeter is sufficiently large, the SVM probe should not perturb the operation of the operational sample.

<span class="mw-page-title-main">Scanning transmission electron microscopy</span> Scanning microscopy using thin samples and transmitted electrons

A scanning transmission electron microscope (STEM) is a type of transmission electron microscope (TEM). Pronunciation is [stɛm] or [ɛsti:i:ɛm]. As with a conventional transmission electron microscope (CTEM), images are formed by electrons passing through a sufficiently thin specimen. However, unlike CTEM, in STEM the electron beam is focused to a fine spot which is then scanned over the sample in a raster illumination system constructed so that the sample is illuminated at each point with the beam parallel to the optical axis. The rastering of the beam across the sample makes STEM suitable for analytical techniques such as Z-contrast annular dark-field imaging, and spectroscopic mapping by energy dispersive X-ray (EDX) spectroscopy, or electron energy loss spectroscopy (EELS). These signals can be obtained simultaneously, allowing direct correlation of images and spectroscopic data.

<span class="mw-page-title-main">Characterization (materials science)</span> Study of material structure and properties

Characterization, when used in materials science, refers to the broad and general process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. The scope of the term often differs; some definitions limit the term's use to techniques which study the microscopic structure and properties of materials, while others use the term to refer to any materials analysis process including macroscopic techniques such as mechanical testing, thermal analysis and density calculation. The scale of the structures observed in materials characterization ranges from angstroms, such as in the imaging of individual atoms and chemical bonds, up to centimeters, such as in the imaging of coarse grain structures in metals.

<span class="mw-page-title-main">Feature-oriented scanning</span>

Feature-oriented scanning (FOS) is a method of precision measurement of surface topography with a scanning probe microscope in which surface features (objects) are used as reference points for microscope probe attachment. With FOS method, by passing from one surface feature to another located nearby, the relative distance between the features and the feature neighborhood topographies are measured. This approach allows to scan an intended area of a surface by parts and then reconstruct the whole image from the obtained fragments. Beside the mentioned, it is acceptable to use another name for the method – object-oriented scanning (OOS).

<span class="mw-page-title-main">Nanometrology</span> Metrology of nanomaterials

Nanometrology is a subfield of metrology, concerned with the science of measurement at the nanoscale level. Nanometrology has a crucial role in order to produce nanomaterials and devices with a high degree of accuracy and reliability in nanomanufacturing.

The following outline is provided as an overview of and topical guide to nanotechnology:

A recurrence tracking microscope (RTM) is a microscope that is based on the quantum recurrence phenomenon of an atomic wave packet. It is used to investigate the nano-structure on a surface.

<span class="mw-page-title-main">Piezoresponse force microscopy</span> Microscopy technique for piezoelectric materials

Piezoresponse force microscopy (PFM) is a variant of atomic force microscopy (AFM) that allows imaging and manipulation of piezoelectric/ferroelectric materials domains. This is achieved by bringing a sharp conductive probe into contact with a ferroelectric surface and applying an alternating current (AC) bias to the probe tip in order to excite deformation of the sample through the converse piezoelectric effect (CPE). The resulting deflection of the probe cantilever is detected through standard split photodiode detector methods and then demodulated by use of a lock-in amplifier (LiA). In this way topography and ferroelectric domains can be imaged simultaneously with high resolution.

The technique of vibrational analysis with scanning probe microscopy allows probing vibrational properties of materials at the submicrometer scale, and even of individual molecules. This is accomplished by integrating scanning probe microscopy (SPM) and vibrational spectroscopy. This combination allows for much higher spatial resolution than can be achieved with conventional Raman/FTIR instrumentation. The technique is also nondestructive, requires non-extensive sample preparation, and provides more contrast such as intensity contrast, polarization contrast and wavelength contrast, as well as providing specific chemical information and topography images simultaneously.

Nanosensors Inc. is a company that manufactures probes for use in atomic force microscopes (AFM) and scanning probe microscopes (SPM). This private, for profit company was founded November 21, 2018. Nanosensors Inc. is located in Neuchatel, Switzerland.

<span class="mw-page-title-main">Scanning near-field ultrasound holography</span>

Scanning near-field ultrasound holography (SNFUH) is a method for performing nondestructive nano-scale high-resolution imaging of buried and embedded structures. SNFUH is critical for analysis of materials, structures and phenomena as they continue to shrink at the micro/nano scale. SNFUH is a type of scanning probe microscopy (SPM) technique that provides depth information as well as spatial resolution at the 10 to 100 nm scale.

The Institute for Functional Imaging of Materials (IFIM) is an organization set up in 2014, within the Oak Ridge National Laboratory (ORNL) situated in Oak Ridge, Tennessee, USA. The goal of the institute is to provide a bridge between modeling and applied mathematics and imaging data collected from various forms of microscopy available at ORNL. The current director of the IFIM is Sergei Kalinin who was awarded the Medal for Scanning Probe Microscopy by the Royal Microscopical Society. The institute supports President Obama's Materials Genome Initiative.

A probe tip is an instrument used in scanning probe microscopes (SPMs) to scan the surface of a sample and make nano-scale images of surfaces and structures. The probe tip is mounted on the end of a cantilever and can be as sharp as a single atom. In microscopy, probe tip geometry and the composition of both the tip and the surface being probed directly affect resolution and imaging quality. Tip size and shape are extremely important in monitoring and detecting interactions between surfaces. SPMs can precisely measure electrostatic forces, magnetic forces, chemical bonding, Van der Waals forces, and capillary forces. SPMs can also reveal the morphology and topography of a surface.

<span class="mw-page-title-main">Dawn Bonnell</span> American scientist

Dawn Austin Bonnell is the Senior Vice Provost for Research at the University of Pennsylvania. She has previously served as the Founding Director of the National Science Foundation Nano–Bio Interface Center, Vice President of the American Ceramic Society and President of the American Vacuum Society. In 2024, she was elected to the American Philosophical Society.

This glossary of nanotechnology is a list of definitions of terms and concepts relevant to nanotechnology, its sub-disciplines, and related fields.

<span class="mw-page-title-main">Miaofang Chi</span> Chinese-American researcher

Miaofang Chi is a distinguished scientist at the Center for Nanophase Materials Sciences in Oak Ridge National Laboratory. Her primary research interests are understanding interfacial charge transfer and mass transport behavior in energy and quantum materials and systems by advancing and employing novel electron microscopy techniques, such as in situ and cryogenic scanning transmission electron microscopy. She was awarded the 2016 Microscopy Society of America Burton Medal and the 2019 Microanalysis Society Kurt Heinrich Award. She was named to Clarivate's list of Highly Cited Researchers in 2018 and 2020.

Peter David Nellist, is a British physicist and materials scientist, currently a professor in the Department of Materials at the University of Oxford. He is noted for pioneering new techniques in high-resolution electron microscopy.

References

  1. 1 2 "Sergei V. Kalinin | Materials Science and Engineering". mse.utk.edu. 2019-08-22. Retrieved 2023-04-03.
  2. 1 2 "Sergei V. Kalinin | Blavatnik Awards for Young Scientists". blavatnikawards.org. Retrieved 2023-04-03.
  3. Kalinin, Sergei Vasilyevich (2002). Nanoscale electric phenomena at oxide surfaces and interfaces by scanning probe microscopy (Thesis). OCLC   244971639. ProQuest   305538369.[ non-primary source needed ]
  4. "Sergei Kalinin | ORNL". www.ornl.gov. Retrieved 2023-04-03.
  5. "Atomic Forge - Foresight Institute". YouTube .
  6. Kalinin, Sergei V.; Setter, Nava; Kholkin, Andrei L. (September 2009). "Electromechanics on the Nanometer Scale: Emerging Phenomena, Devices, and Applications". MRS Bulletin. 34 (9): 634–642. doi:10.1557/mrs2009.174.[ non-primary source needed ]
  7. Kalinin, Sergei V.; Bonnell, Dawn A. (11 March 2002). "Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces". Physical Review B. 65 (12): 125408. Bibcode:2002PhRvB..65l5408K. doi:10.1103/PhysRevB.65.125408.[ non-primary source needed ]
  8. Gruverman, A.; Kalinin, S. V. (January 2006). "Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics". Journal of Materials Science. 41 (1): 107–116. Bibcode:2006JMatS..41..107G. doi:10.1007/s10853-005-5946-0. S2CID   36210538.[ non-primary source needed ]
  9. Kalinin, Sergei V.; Karapetian, Edgar; Kachanov, Mark (1 November 2004). "Nanoelectromechanics of piezoresponse force microscopy". Physical Review B. 70 (18): 184101. arXiv: cond-mat/0408223 . Bibcode:2004PhRvB..70r4101K. doi:10.1103/PhysRevB.70.184101. S2CID   119040879.[ non-primary source needed ]
  10. "Kalinin named fellow of AVS professional society | ORNL". www.ornl.gov. Retrieved 2017-02-25.
  11. "Two ORNL Neutron Sciences researchers elected fellows of American Physical Society | Neutron Science at ORNL". neutrons.ornl.gov. Retrieved 2017-02-26.