Shelly limestone

Last updated
Brachiopods and bryozoans in an Ordovician shelly limestone, southern Minnesota OrdFossilsMN.JPG
Brachiopods and bryozoans in an Ordovician shelly limestone, southern Minnesota
Shelly limestone from Suzac France Meschers 17 Calcaire coquillier 2013.jpg
Shelly limestone from Suzac France

Shelly limestone is a highly fossiliferous limestone, composed of a number of fossilized organisms such as brachiopods, bryozoans, crinoids, sponges, corals and mollusks. It varies in color, texture and hardness. Coquina is a poorly indurated form of shelly limestone.

Contents

Shelly limestone is a sedimentary rock because it is made up of fragments. To be shelly, it is full of broken shells which are "glued" together with calcite. Calcium carbonate often makes up around 10% of the volume, whilst many varied sized shells from granular to very large pebbles.[ clarification needed ] Its color is gray.

Formation

Each shelly limestone is unique in its own way, where every stone of this type is composed of different fossilized organism and shell fragments. Shelly limestones are mainly found near where marine life live or where marine life once occupied.

The unique qualities of a shelly limestone are formed with the help of calcite, acting as a sticking agent for small shell fragments, dead marine organism and other minerals. Typically, the rock is composed of approximately 10 percent calcium carbonate. The appearance of shelly limestones can differ in color, composition, hardness and texture depending on where the stone is formed. Generally, however, shelly limestones have noticeable shell fragments in various sizes. Shelly limestone is considered a carbonate rock because the stone is mainly composed primarily of carbonate minerals. In detail, shelly limestones are formed when rocks containing different minerals get weathered down then get transported to a standing body of water. From here organisms that precipitate carbon, phosphate, and silicate materials (which forms the rock's shelly texture) combine with the minerals and go through a process called deposition, where the minerals and organic components sort by size and density. Once sorted, the fragments go through diagenesis, where the fragments compress and cement together, and over time will form a shelly limestone. [1]

Shelly limestone can be found dating back to Precambrian and Cambrian times. [2]

Applications

Shelly limestone can be found worldwide and are used to help identify the time period the limestone was formed, different types of organism that were alive in a specific time period, as well as, conditions of the environment based on its mineral composition. These fossil shells can also contain elements and geochemical details that can help determine changes in the climate. [3] Other applications of limestone include being used to produce cement for roads and other foundations. Due to the stones high calcium carbonate content, it can also be used in the agricultural industry as an agent that helps reduce acidity in soil.

Bibliography

See also

Notes

  1. Prothero, Donald R, and F. L Schwab. Sedimentary Geology : An Introduction to Sedimentary Rocks and Stratigraphy. W.H. Freeman, 1996.
  2. MATTHEWS, S. C.; MISSARZHEVSKY, V. V. (May 1975). "Small shelly fossils of late Precambrian and early Cambrian age: a review of recent work". Journal of the Geological Society. 131 (3): 289–303. Bibcode:1975JGSoc.131..289M. doi:10.1144/gsjgs.131.3.0289. ISSN   0016-7649.
  3. Benton, M. J, and D. A. T Harper. Introduction to Paleobiology and the Fossil Record. Wiley-Blackwell, 2009.

Related Research Articles

<span class="mw-page-title-main">Limestone</span> Type of sedimentary rock

Limestone is a type of carbonate sedimentary rock which is the main source of the material lime. It is composed mostly of the minerals calcite and aragonite, which are different crystal forms of CaCO3. Limestone forms when these minerals precipitate out of water containing dissolved calcium. This can take place through both biological and nonbiological processes, though biological processes, such as the accumulation of corals and shells in the sea, have likely been more important for the last 540 million years. Limestone often contains fossils which provide scientists with information on ancient environments and on the evolution of life.

<span class="mw-page-title-main">Sedimentary rock</span> Rock formed by the deposition and cementation of particles

Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles to settle in place. The particles that form a sedimentary rock are called sediment, and may be composed of geological detritus (minerals) or biological detritus. The geological detritus originated from weathering and erosion of existing rocks, or from the solidification of molten lava blobs erupted by volcanoes. The geological detritus is transported to the place of deposition by water, wind, ice or mass movement, which are called agents of denudation. Biological detritus was formed by bodies and parts of dead aquatic organisms, as well as their fecal mass, suspended in water and slowly piling up on the floor of water bodies. Sedimentation may also occur as dissolved minerals precipitate from water solution.

<span class="mw-page-title-main">Chalk</span> Soft, white, porous sedimentary rock made of calcium carbonate

Chalk is a soft, white, porous, sedimentary carbonate rock. It is a form of limestone composed of the mineral calcite and originally formed deep under the sea by the compression of microscopic plankton that had settled to the sea floor. Chalk is common throughout Western Europe, where deposits underlie parts of France, and steep cliffs are often seen where they meet the sea in places such as the Dover cliffs on the Kent coast of the English Channel.

<span class="mw-page-title-main">Chert</span> Hard, fine-grained sedimentary rock composed of cryptocrystalline silica

Chert is a hard, fine-grained sedimentary rock composed of microcrystalline or cryptocrystalline quartz, the mineral form of silicon dioxide (SiO2). Chert is characteristically of biological origin, but may also occur inorganically as a chemical precipitate or a diagenetic replacement, as in petrified wood.

<span class="mw-page-title-main">Exoskeleton</span> External skeleton of an organism

An exoskeleton is a skeleton that is on the exterior of an animal to both support the body shape and protect the internal organs, in contrast to an internal endoskeleton which is enclosed underneath other soft tissues. Some large, hard and non-flexible protective exoskeletons are known as shell or armour.

<span class="mw-page-title-main">Lithology</span> Description of its physical characteristics of a rock unit

The lithology of a rock unit is a description of its physical characteristics visible at outcrop, in hand or core samples, or with low magnification microscopy. Physical characteristics include colour, texture, grain size, and composition. Lithology may refer to either a detailed description of these characteristics, or a summary of the gross physical character of a rock. Examples of lithologies in the second sense include sandstone, slate, basalt, or limestone.

<span class="mw-page-title-main">Ooid</span> Small sedimentary grain that forms on shallow tropical seabeds

Ooids are small, spheroidal, "coated" (layered) sedimentary grains, usually composed of calcium carbonate, but sometimes made up of iron- or phosphate-based minerals. Ooids usually form on the sea floor, most commonly in shallow tropical seas. After being buried under additional sediment, these ooid grains can be cemented together to form a sedimentary rock called an oolite. Oolites usually consist of calcium carbonate; these belong to the limestone rock family. Pisoids are similar to ooids, but are larger than 2 mm in diameter, often considerably larger, as with the pisoids in the hot springs at Carlsbad in the Czech Republic.

<span class="mw-page-title-main">Oolite</span> Sedimentary rock formed from ooids

Oolite or oölite is a sedimentary rock formed from ooids, spherical grains composed of concentric layers. Strictly, oolites consist of ooids of diameter 0.25–2 millimetres; rocks composed of ooids larger than 2 mm are called pisolites. The term oolith can refer to oolite or individual ooids.

<span class="mw-page-title-main">Dolomite (rock)</span> Sedimentary carbonate rock that contains a high percentage of the mineral dolomite

Dolomite (also known as dolomite rock, dolostone or dolomitic rock) is a sedimentary carbonate rock that contains a high percentage of the mineral dolomite, CaMg(CO3)2. It occurs widely, often in association with limestone and evaporites, though it is less abundant than limestone and rare in Cenozoic rock beds (beds less than about 66 million years in age). The first geologist to distinguish dolomite from limestone was Déodat Gratet de Dolomieu; a French mineralogist and geologist whom it is named after. He recognized and described the distinct characteristics of dolomite in the late 18th century, differentiating it from limestone.

<span class="mw-page-title-main">Microfossil</span> Fossil that requires the use of a microscope to see it

A microfossil is a fossil that is generally between 0.001 mm and 1 mm in size, the visual study of which requires the use of light or electron microscopy. A fossil which can be studied with the naked eye or low-powered magnification, such as a hand lens, is referred to as a macrofossil.

<span class="mw-page-title-main">Phosphorite</span> Sedimentary rock containing large amounts of phosphate minerals

Phosphorite, phosphate rock or rock phosphate is a non-detrital sedimentary rock that contains high amounts of phosphate minerals. The phosphate content of phosphorite (or grade of phosphate rock) varies greatly, from 4% to 20% phosphorus pentoxide (P2O5). Marketed phosphate rock is enriched ("beneficiated") to at least 28%, often more than 30% P2O5. This occurs through washing, screening, de-liming, magnetic separation or flotation. By comparison, the average phosphorus content of sedimentary rocks is less than 0.2%.

<span class="mw-page-title-main">Carbonate rock</span> Class of sedimentary rock

Carbonate rocks are a class of sedimentary rocks composed primarily of carbonate minerals. The two major types are limestone, which is composed of calcite or aragonite (different crystal forms of CaCO3), and dolomite rock (also known as dolostone), which is composed of mineral dolomite (CaMg(CO3)2). They are usually classified based on texture and grain size. Importantly, carbonate rocks can exist as metamorphic and igneous rocks, too. When recrystallized carbonate rocks are metamorphosed, marble is created. Rare igneous carbonate rocks even exist as intrusive carbonatites and, even rarer, there exists volcanic carbonate lava.

<span class="mw-page-title-main">Halkieriid</span> Family of incertae sedis

The halkieriids are a group of fossil organisms from the Lower to Middle Cambrian. Their eponymous genus is Halkieria, which has been found on almost every continent in Lower to Mid Cambrian deposits, forming a large component of the small shelly fossil assemblages. The best known species is Halkieria evangelista, from the North Greenland Sirius Passet Lagerstätte, in which complete specimens were collected on an expedition in 1989. The fossils were described by Simon Conway Morris and John Peel in a short paper in 1990 in the journal Nature. Later a more thorough description was undertaken in 1995 in the journal Philosophical Transactions of the Royal Society of London and wider evolutionary implications were posed.

<span class="mw-page-title-main">Marine sediment</span>

Marine sediment, or ocean sediment, or seafloor sediment, are deposits of insoluble particles that have accumulated on the seafloor. These particles either have their origins in soil and rocks and have been transported from the land to the sea, mainly by rivers but also by dust carried by wind and by the flow of glaciers into the sea, or they are biogenic deposits from marine organisms or from chemical precipitation in seawater, as well as from underwater volcanoes and meteorite debris.

<span class="mw-page-title-main">Bioclast</span>

Bioclasts are skeletal fossil fragments of once living marine or land organisms that are found in sedimentary rocks laid down in a marine environment—especially limestone varieties around the globe, some of which take on distinct textures and coloration from their predominate bioclasts—that geologists, archaeologists and paleontologists use to date a rock strata to a particular geological era.

This glossary of geology is a list of definitions of terms and concepts relevant to geology, its sub-disciplines, and related fields. For other terms related to the Earth sciences, see Glossary of geography terms.

The small shelly fauna, small shelly fossils (SSF), or early skeletal fossils (ESF) are mineralized fossils, many only a few millimetres long, with a nearly continuous record from the latest stages of the Ediacaran to the end of the Early Cambrian Period. They are very diverse, and there is no formal definition of "small shelly fauna" or "small shelly fossils". Almost all are from earlier rocks than more familiar fossils such as trilobites. Since most SSFs were preserved by being covered quickly with phosphate and this method of preservation is mainly limited to the late Ediacaran and early Cambrian periods, the animals that made them may actually have arisen earlier and persisted after this time span.

<i>Anabarites</i> Cambrian animal genus

Anabarites is a problematic lower Cambrian genus, and is one of the small shelly fossils. It was abundant in the early Tommotian and is also found in the Nemakit-Daldynian. The fossils represent the triradially symmetrical mineralised tube in which the organism dwelt; it was sedentary. It is named after the Anabar region in Yakutia, Russia; its name does not imply 'heavy'.

<span class="mw-page-title-main">Shallow water marine environment</span>

Shallow water marine environment refers to the area between the shore and deeper water, such as a reef wall or a shelf break. This environment is characterized by oceanic, geological and biological conditions, as described below. The water in this environment is shallow and clear, allowing the formation of different sedimentary structures, carbonate rocks, coral reefs, and allowing certain organisms to survive and become fossils.

<span class="mw-page-title-main">Marine biogenic calcification</span> Shell formation mechanism

Marine biogenic calcification is the production of calcium carbonate by organisms in the global ocean.

References