Signal-averaged electrocardiogram

Last updated
Signal-averaged electrocardiogram
Signal-averaged ECG with digoxin.png
Signal-averaged electrocardiogram from a 77-year-old male taking digoxin for atrial fibrillation.
Purposeto reveal small variations (ventricular late potentials (VLPs)) in the QRS complex

Signal-averaged electrocardiography (SAECG) is a special electrocardiographic technique, in which multiple electric signals from the heart are averaged to remove interference and reveal small variations in the QRS complex, usually the so-called "late potentials". These may represent a predisposition towards potentially dangerous ventricular tachyarrhythmias.

Contents

Technique

Procedure

A resting electrocardiogram (ECG) is recorded in the supine position using an ECG machine equipped with SAECG software; this can be done by a physician, nurse, or medical technician. Unlike standard basal ECG recording, which requires only a few seconds, SAECG recording requires a few minutes (usually about 7-10 minutes), as the machine must record multiple subsequent QRS potentials to remove interference due to skeletal muscle and to obtain a statistically significant average trace. For this reason, it is important for the patient to lie as still as possible during the recording.

Results

SAECG recording yields a single, averaged QRS potential, usually printed in a much larger scale than standard ECGs, upon which the SAECG software performs calculations to reveal small variations (typically 1-25 uV) in the final portion of the QRS complex (the so-called "late potentials, or more accurately, "late ventricular potentials"). These can be immediately interpreted by comparing results with cut-off values.

Significance

Late potentials are taken to represent delayed and fragmented depolarisation of the ventricular myocardium, which may be the substrate for a micro-re-entry mechanism, implying a higher risk of potentially dangerous ventricular tachyarrhythmias. This has been used for the risk stratification of sudden cardiac death in people who have had a myocardial infarction, as well as in people with known coronary heart disease, cardiomyopathies, or unexplained syncope. Still, the real predictive value of these findings is questioned. Late potentials may be found in 0-10% of normal volunteers. When used as a prognostic factor for the development of ventricular tachycardia, they have a sensitivity of 72% and a specificity of 75%, yielding a positive predictive value of 20% and a negative predictive value of 20%.

Related Research Articles

Electrocardiography Examination of the hearts electrical activity

Electrocardiography is the process of producing an electrocardiogram, a recording of the heart's electrical activity. It is an electrogram of the heart which is a graph of voltage versus time of the electrical activity of the heart using electrodes placed on the skin. These electrodes detect the small electrical changes that are a consequence of cardiac muscle depolarization followed by repolarization during each cardiac cycle (heartbeat). Changes in the normal ECG pattern occur in numerous cardiac abnormalities, including cardiac rhythm disturbances, inadequate coronary artery blood flow, and electrolyte disturbances.

Tachycardia Heart rate that exceeds the normal resting rate

Tachycardia, also called tachyarrhythmia, is a heart rate that exceeds the normal resting rate. In general, a resting heart rate over 100 beats per minute is accepted as tachycardia in adults. Heart rates above the resting rate may be normal or abnormal.

Premature ventricular contraction Human disease

A premature ventricular contraction (PVC) is a relatively common event where the heartbeat is initiated by Purkinje fibers in the ventricles rather than by the sinoatrial node. PVCs may cause no symptoms or may be perceived as a "skipped beat" or felt as palpitations in the chest. Single beat PVCs do not usually pose a danger.

Wolff–Parkinson–White syndrome Medical condition

Wolff–Parkinson–White syndrome (WPWS) is a disorder due to a specific type of problem with the electrical system of the heart. About 60% of people with the electrical problem developed symptoms, which may include an abnormally fast heartbeat, palpitations, shortness of breath, lightheadedness, or syncope. Rarely, cardiac arrest may occur. The most common type of irregular heartbeat that occurs is known as paroxysmal supraventricular tachycardia.

Holter monitor Portable device for cardiac monitoring

In medicine, a Holter monitor is a type of ambulatory electrocardiography device, a portable device for cardiac monitoring for at least 24 to 72 hours.

Electrical conduction system of the heart Aspect of heart function

The electrical conduction system of the heart transmits signals generated usually by the sinoatrial node to cause contraction of the heart muscle. The pacemaking signal generated in the sinoatrial node travels through the right atrium to the atrioventricular node, along the Bundle of His and through bundle branches to cause contraction of the heart muscle. This signal stimulates contraction first of the right and left atrium, and then the right and left ventricles. This process allows blood to be pumped throughout the body.

Ventricular tachycardia Fast heart rhythm that originates in one of the ventricles of the heart

Ventricular tachycardia is a fast heart rate arising from the lower chambers of the heart. Although a few seconds may not result in problems, longer periods are dangerous; and multiple episodes over a short period of time is referred to as an Electrical Storm. Short periods may occur without symptoms, or present with lightheadedness, palpitations, or chest pain. Ventricular tachycardia may result in ventricular fibrillation and turn into cardiac arrest. It is found initially in about 7% of people in cardiac arrest.

Sinus rhythm Any cardiac rhythm where depolarisation of the cardiac muscle begins at the sinus node

A sinus rhythm is any cardiac rhythm in which depolarisation of the cardiac muscle begins at the sinus node. It is characterised by the presence of correctly oriented P waves on the electrocardiogram (ECG). Sinus rhythm is necessary, but not sufficient, for normal electrical activity within the heart.

AV nodal reentrant tachycardia Medical condition

AV-nodal reentrant tachycardia (AVNRT) is a type of abnormal fast heart rhythm. It is a type of supraventricular tachycardia (SVT), meaning that it originates from a location within the heart above the bundle of His. AV nodal reentrant tachycardia is the most common regular supraventricular tachycardia. It is more common in women than men. The main symptom is palpitations. Treatment may be with specific physical maneuvers, medications, or, rarely, synchronized cardioversion. Frequent attacks may require radiofrequency ablation, in which the abnormally conducting tissue in the heart is destroyed.

Heart rate monitor

A heart rate monitor (HRM) is a personal monitoring device that allows one to measure/display heart rate in real time or record the heart rate for later study. It is largely used to gather heart rate data while performing various types of physical exercise. Measuring electrical heart information is referred to as Electrocardiography.

T wave Repolarization of the ventricles in a human heart

In electrocardiography, the T wave represents the repolarization of the ventricles. The interval from the beginning of the QRS complex to the apex of the T wave is referred to as the absolute refractory period. The last half of the T wave is referred to as the relative refractory period or vulnerable period. The T wave contains more information than the QT interval. The T wave can be described by its symmetry, skewness, slope of ascending and descending limbs, amplitude and subintervals like the Tpeak–Tend interval.

QRS complex

The QRS complex is the combination of three of the graphical deflections seen on a typical electrocardiogram. It is usually the central and most visually obvious part of the tracing. It corresponds to the depolarization of the right and left ventricles of the heart and contraction of the large ventricular muscles.

T wave alternans

T wave alternans (TWA) is a periodic beat-to-beat variation in the amplitude or shape of the T wave in an electrocardiogram TWA was first described in 1908. At that time, only large variations could be detected. Those large TWAs were associated with increased susceptibility to lethal ventricular tachycardias.

Left bundle branch block Medical condition

Left bundle branch block (LBBB) is a cardiac conduction abnormality seen on the electrocardiogram (ECG). In this condition, activation of the left ventricle of the heart is delayed, which causes the left ventricle to contract later than the right ventricle.

Right axis deviation Medical condition

The electrical axis of the heart is the net direction in which the wave of depolarization travels. It is measured using an electrocardiogram (ECG). Normally, this begins at the sinoatrial node ; from here the wave of depolarisation travels down to the apex of the heart. The hexaxial reference system can be used to visualise the directions in which the depolarisation wave may travel.

Vectorcardiography

Vectorcardiography (VCG) is a method of recording the magnitude and direction of the electrical forces that are generated by the heart by means of a continuous series of vectors that form curving lines around a central point.

Left axis deviation

In electrocardiography, left axis deviation (LAD) is a condition wherein the mean electrical axis of ventricular contraction of the heart lies in a frontal plane direction between −30° and −90°. This is reflected by a QRS complex positive in lead I and negative in leads aVF and II.

Fusion beat

A fusion beat occurs when electrical impulses from different sources act upon the same region of the heart at the same time. If it acts upon the ventricular chambers it is called a ventricular fusion beat, whereas colliding currents in the atrial chambers produce atrial fusion beats.

High frequency QRS

High frequency QRS (HFQRS) refers to the analysis of the high frequency spectral components of the QRS complex in an electrocardiogram (ECG). High frequency analysis of the QRS complex may be useful for detection of coronary artery disease during an exercise stress test. It however requires special software.

Pan–Tompkins algorithm Heart rate measuring algorithm used in ECGs

The Pan–Tompkins algorithm is commonly used to detect QRS complexes in electrocardiographic signals (ECG). The QRS complex represents the ventricular depolarization and the main spike visible in an ECG signal. This feature makes it particularly suitable for measuring heart rate, the first way to assess the heart health state. In the first derivation of Einthoven of a physiological heart, the QRS complex is composed by a downward deflection, a high upward deflection and a final downward deflection.

References