Signal recognition particle RNA

Last updated
RN7SL1
Identifiers
Aliases RN7SL1 , 7L1a, 7SL, RN7SL, RNSRP1, Signal recognition particle RNA, RNA, 7SL, cytoplasmic 1, RNA component of signal recognition particle 7SL1
External IDs OMIM: 612177 GeneCards: RN7SL1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC) Chr 14: 49.59 – 49.59 Mb n/a
PubMed search [2] n/a
Wikidata
View/Edit Human
Secondary structure of the human SRP RNA. Helices are numbered from 2 to 8. Helical sections in gray are named with lower case letters. Residues are numbered in increments of ten. The 5'- and 3'-ends are indicated. Highlighted are the two hinges and the small (Alu) and large (S, "specific") domain of the SRP RNA. HomosapiSRPRNA-2d.png
Secondary structure of the human SRP RNA. Helices are numbered from 2 to 8. Helical sections in gray are named with lower case letters. Residues are numbered in increments of ten. The 5′- and 3′-ends are indicated. Highlighted are the two hinges and the small (Alu) and large (S, "specific") domain of the SRP RNA.

The signal recognition particle RNA, (also known as 7SL, 6S, ffs, or 4.5S RNA) is part of the signal recognition particle (SRP) ribonucleoprotein complex. SRP recognizes the signal peptide and binds to the ribosome, halting protein synthesis. SRP-receptor is a protein that is embedded in a membrane, and which contains a transmembrane pore. When the SRP-ribosome complex binds to SRP-receptor, SRP releases the ribosome and drifts away. The ribosome resumes protein synthesis, but now the protein is moving through the SRP-receptor transmembrane pore.

Contents

In this way SRP directs the movement of proteins within the cell to bind with a transmembrane pore which allows the protein to cross the membrane to where it is needed. The RNA and protein components of this complex are highly conserved but do vary between the different kingdoms of life.

The common SINE family Alu probably originated from a 7SL RNA gene after deletion of a central sequence. [3]

The eukaryotic SRP consists of a 300-nucleotide 7S RNA and six proteins: SRPs 72, 68, 54, 19, 14, and 9. Archaeal SRP consists of a 7S RNA and homologues of the eukaryotic SRP19 and SRP54 proteins. Eukaryotic and archaeal 7S RNAs have very similar secondary structures. [4]

In most bacteria, the SRP consists of an RNA molecule (4.5S) and the Ffh protein (a homologue of the eukaryotic SRP54 protein). Some Gram-positive bacteria (e.g. Bacillus subtilis ) have a longer eukaryote-like SRP RNA that includes an Alu domain. [5]

In eukaryotes and archaea, eight helical elements fold into the Alu and S domains, separated by a long linker region. [6] [7] The Alu domain is thought to mediate the peptide chain elongation retardation function of the SRP. [6] The universally conserved helix which interacts with the SRP54 M domain mediates signal sequence recognition. [7] [8] The SRP19-helix 6 complex is thought to be involved in SRP assembly and stabilises helix 8 for SRP54. binding [6] Humans have three functional SRP RNA genes, conveniently named RN7SL1, RN7SL2, and RN7SL3. The human genome in particular is known to contain a large amount of SRP RNA related sequence, including Alu repeats. [5]

Discovery

SRP RNA was first detected in avian and murine oncogenic RNA (ocorna) virus particles. [9] Subsequently, SRP RNA was found to be a stable component of uninfected HeLa cells where it associated with membrane and polysome fractions. [10] [11] In 1980, cell biologists purified from canine pancreas an 11S "signal recognition protein" (fortuitously also abbreviated "SRP") which promoted the translocation of secretory proteins across the membrane of the endoplasmic reticulum. [12] It was then discovered that SRP contained an RNA component. [13] Comparing the SRP RNA genes from different species revealed helix 8 of the SRP RNA to be highly conserved in all domains of life. [14] The regions near the 5′- and 3′-ends of the mammalian SRP RNA are similar to the dominant Alu family of middle repetitive sequences of the human genome. [15] It is now understood that Alu DNA originated from SRP RNA by excision of the central SRP RNA-specific (S) fragment, followed by reverse transcription and integration into multiple sites of the human chromosomes. [3] SRP RNAs have been identified also in some organelles, for example in the plastid SRPs of many photosynthetic organisms, [16] and in the nuclear ribosomal internal transcribed spacer region of several ectomycorrhizal fungi. [17]

Transcription and processing

Eukaryotic SRP RNAs are transcribed from DNA by RNA polymerase III (Pol III). [18] RNA polymerase III also transcribes the genes for 5S ribosomal RNA, tRNA, 7SK RNA, and U6 spliceosomal RNA. The promoters of the human SRP RNA genes include elements located downstream of the transcriptional start site. Plant SRP RNA promoters contain an upstream stimulatory element (USE) and a TATA box.[ citation needed ] Yeast SRP RNA genes have a TATA box and additional intragenic promoter sequences (referred to as A- and B-blocks) which play a role in regulating transcription of the SRP gene by Pol III. [19] In the bacteria, genes are organized in operons and transcribed by RNA polymerase.[ citation needed ] The 5′-end of the small (4.5S) SRP RNA of many bacteria is cleaved by RNase P. [20] The ends of the Bacillus subtilis SRP RNA are processed by RNase III. So far, no SRP RNA introns have been observed.[ citation needed ]

Function

The classical function of SRP in translation-translocation. A membrane separates the cytosol from the endoplasmic reticulum. A ribosome (light gray with A, P, and E sites) synthesizes a protein with a signal peptide (green) encoded by messenger RNA (indicated by a line with 5'- and 3'-ends). The elongated SRP (blue), with its large (LD) and small (SD) domains, forms a complex with the membrane-resident SRP receptor (SR). When SRP separates, the protein crosses the membrane through a channel or translocon. The signal peptide may be removed by signal peptide peptidase (SP) and the protein modified by oligosaccharyl transferase (OT). SRPFunction2.png
The classical function of SRP in translation-translocation. A membrane separates the cytosol from the endoplasmic reticulum. A ribosome (light gray with A, P, and E sites) synthesizes a protein with a signal peptide (green) encoded by messenger RNA (indicated by a line with 5′- and 3′-ends). The elongated SRP (blue), with its large (LD) and small (SD) domains, forms a complex with the membrane-resident SRP receptor (SR). When SRP separates, the protein crosses the membrane through a channel or translocon. The signal peptide may be removed by signal peptide peptidase (SP) and the protein modified by oligosaccharyl transferase (OT).

Co-translational translocation

The SRP RNA is an integral part of the small and the large domain of the SRP. The function of the small domain is to delay protein translation until the ribosome-bound SRP has an opportunity to associate with the membrane-resident SRP receptor (SR). Within the large domain, the SRP RNA of the signal peptide-charged SRP promotes the hydrolysis of two guanosine triphosphate (GTP) molecules. This reaction releases the SRP from the SRP receptor and the ribosome, allowing translation to continue and the protein to enter the translocon. [21] The protein transverses the membrane co-translationally (during translation) and enters into another cellular compartment or the extracellular space. In eukaryotes, the target is the membrane of the endoplasmic reticulum (ER). In Archaea, SRP delivers proteins to the plasma membrane. [22] In the bacteria, SRP primarily incorporates proteins into the inner membrane. [23]

Post-translational transport

SRP participates also in the sorting of proteins after their synthesis has been completed (post-translational protein sorting). In eukaryotes, tail-anchored proteins possessing a hydrophobic insertion sequence at their C-terminus are delivered to the endoplasmic reticulum (ER) by the SRP. [24] Similarly, the SRP assists post-translationally in the import of nuclear-encoded proteins to the thylakoid membrane of chloroplasts. [25]

Structure

SRP RNA features and nomenclature. The human SRP RNA secondary structure is outlined in light gray, and the 5'- and 3'-ends are indicated. Conserved motifs are shown in dark gray. Helices are numbered from 1 to 12, helical sections are designated by lower case letters, and helix insertions by dotted numbers. Tertiary interactions between the apical loops of helices 3 and 4, and between helices 6 and 8 are indicated dotted lines. SRPRNANomenclature.png
SRP RNA features and nomenclature. The human SRP RNA secondary structure is outlined in light gray, and the 5′- and 3′-ends are indicated. Conserved motifs are shown in dark gray. Helices are numbered from 1 to 12, helical sections are designated by lower case letters, and helix insertions by dotted numbers. Tertiary interactions between the apical loops of helices 3 and 4, and between helices 6 and 8 are indicated dotted lines.

In 2005, a nomenclature for all SRP RNAs proposed a numbering system of 12 helices. Helix sections are named with a lower case letter suffix (e.g. 5a). Insertions, or helix "branches" are given dotted numbers (e.g. 9.1 and 12.1).

The SRP RNA spans a wide phylogenetic spectrum with respect to size and the number of its structural features (see the SRP RNA Secondary Structure Examples, below). The smallest functional SRP RNAs have been found in mycoplasma and related species. Escherichia coli SRP RNA (also called 4.5S RNA) is composed of 114 nucleotide residues and forms an RNA stem-loop. The gram-positive bacterium Bacillus subtilis encodes a larger 6S SRP RNA which resemble the Archaeal homologs but lacks SRP RNA helix 6. Archaeal SRP RNAs possess helices 1 to 8, lack helix 7, and are characterized by a tertiary structure which involves the apical loops of helix 3 and helix 4. The eukaryotic SRP RNAs lack helix 1 and contain a helix 7 of variable size. Some protozoan SRP RNAs have reduced helices 3 and 4. The ascomycota SRP RNAs have an altogether reduced small domain and lack helices 3 and 4. The largest SRP RNAs known to date are found in the yeasts (Saccharomycetes) which acquired helices 9 to 12 as insertions into helix 5, as well as an extended helix 7. Seed plants express numerous highly divergent SRP RNAs. [4]

Motifs

Four conserved features (motifs) have been identified (shown in the Figure in dark gray): the (1) SRP54 binding motif, (2) Helix 6 GNAR tetraloop motif, (3) 5e motif, and (4) UGU(NR) motif.[ citation needed ]

SRP54 binding

The asymmetric loop between helical sections 8a and 8b and the adjacent base paired 8b section are a prominent property of every SRP RNA. Helical section 8b contains non-Watson–Crick base pairings which contribute to the formation of a flatted minor groove in the RNA suitable for the binding of protein SRP54 (called Ffh in the bacteria). [7] The apical loop of helix 8 contains four, five, or six residues, depending on the species. It has a highly conserved guanosine as the first and an adenosine as the last loop residue. This feature is required for the interaction with the third adenosine residue of the helix 6 GNAR tetraloop motif. [26]

Helix 6 GNAR tetraloop

The SRP RNAs of eukaryotes and Archaea have a GNAR tetraloop (N is for any nucleotide, R is for a purine) in helix 6. Its conserved adenosine residue is important for the binding of protein SRP19. [27] This adenosine makes a tertiary interaction with another adenosine residue located in the apical loop of helix 8. [28]

5e

The 11 nucleotides of the 5e motif form four base pairs which are interrupted by a loop of three nucleotides. [5] In the eukaryotes, the first nucleotide of the loop is an adenosine which is needed for the binding of protein SRP72. [29]

UGU(NR)

The UGU(NR) motif connects helices 3 and 4 in the small (Alu) SRP domain. Fungal SRP RNAs lacking helices 3 and 4 contain the motif within the loop of helix 2. [5] It is important in the binding of the SRP9/14 protein heterodimer as part of an RNA U-turn. [30]

Secondary

Tertiary

SRP RNA
Identifiers
Rfam CL00003
Other data
PDB structures PDBe 2IY3 , 1Z43 , 1RY1 , 1QZW , 1MFQ , 1L9A , 1LNG , 1JID , 1E8S , 1E8O , 1DUL , 1DUH , 1D4R , 28SR , 28SP

X-ray crystallography, nuclear magnetic resonance (NMR), and cryo-electron microscopy (cryo-EM] have been used to determine the molecular structure of portions of the SRP RNAs from various species. The available PDB structures show the RNA molecule either free or when bound to one or more SRP proteins.

Binding proteins

One or more SRP proteins bind to the SRP RNA to assemble the functional SRP. The SRP proteins are named according to their approximate molecular mass measured in kilodalton. [32] Most bacterial SRPs are composed of SRP RNA and SRP54 (also named Ffh for "Fifty-four homolog"). The Archaeal SRP contains proteins SRP54 and SRP19. In eukaryotes, the SRP RNA combines with the imported SRP proteins SRP9/14, SRP19, and SRP68/72 in a region of the nucleolus. This pre-SRP is transported to the cytosol where it binds to protein SRP54. [33] The molecular structures of the free or SRP RNA-bound proteins SRP9/14, SRP19, or SRP54 are known at high resolution.

SRP9 and SRP14

SRP9 and SRP14 are structurally related and form the SRP9/14 heterodimer which binds to the SRP RNA of the small (Alu) domain. [30] Yeast SRP lacks SRP9 and contains the structurally related binding protein SRP21. Yeast SRP14 forms homodimers in crystal and does not bind Alu. [34] SRP9/14 is absent in the SRP of trypanosoma which instead possess a tRNA-like molecule. [35]

SRP19

SRP19 is found in the SRP of eukaryotes and Archaea. Its primary role is in preparing the SRP RNA for the binding of SRP54, SRP68, and SRP72 by properly arranging SRP RNA helices 6 and 8. [31] Yeast SRP contains Sec65p, a larger homolog of SRP19. [36]

SRP54

Protein SRP54 (named Ffh in the bacteria) is an essential component of every SRP. It is composed of three functional domains: the N-terminal (N) domain, the GTPase (G) domain, and the methionine-rich (M) domain. [37] [38]

SRP68 and SRP72

Proteins SRP68 and SRP72 are structurally unrelated constituents of the large domain of the eukaryotic SRP. They form a stable SRP68/72 heterodimer. About one third of the human SRP68 protein was shown to bind to the SRP RNA. [39] A relatively small region located near the C-terminus of SRP72 binds to the 5e SRP RNA motif. [29] [40]

Related Research Articles

Protein targeting or protein sorting is the biological mechanism by which proteins are transported to their appropriate destinations within or outside the cell. Proteins can be targeted to the inner space of an organelle, different intracellular membranes, the plasma membrane, or to the exterior of the cell via secretion. Information contained in the protein itself directs this delivery process. Correct sorting is crucial for the cell; errors or dysfunction in sorting have been linked to multiple diseases.

<span class="mw-page-title-main">Transcription factor</span> Protein that regulates the rate of DNA transcription

In molecular biology, a transcription factor (TF) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The function of TFs is to regulate—turn on and off—genes in order to make sure that they are expressed in the desired cells at the right time and in the right amount throughout the life of the cell and the organism. Groups of TFs function in a coordinated fashion to direct cell division, cell growth, and cell death throughout life; cell migration and organization during embryonic development; and intermittently in response to signals from outside the cell, such as a hormone. There are approximately 1600 TFs in the human genome. Transcription factors are members of the proteome as well as regulome.

The signal recognition particle (SRP) is an abundant, cytosolic, universally conserved ribonucleoprotein that recognizes and targets specific proteins to the endoplasmic reticulum in eukaryotes and the plasma membrane in prokaryotes.

A signal peptide is a short peptide present at the N-terminus of most newly synthesized proteins that are destined toward the secretory pathway. These proteins include those that reside either inside certain organelles, secreted from the cell, or inserted into most cellular membranes. Although most type I membrane-bound proteins have signal peptides, most type II and multi-spanning membrane-bound proteins are targeted to the secretory pathway by their first transmembrane domain, which biochemically resembles a signal sequence except that it is not cleaved. They are a kind of target peptide.

<span class="mw-page-title-main">Helix-turn-helix</span> Structural motif capable of binding DNA

Helix-turn-helix is a DNA-binding domain (DBD). The helix-turn-helix (HTH) is a major structural motif capable of binding DNA. Each monomer incorporates two α helices, joined by a short strand of amino acids, that bind to the major groove of DNA. The HTH motif occurs in many proteins that regulate gene expression. It should not be confused with the helix–loop–helix motif.

<span class="mw-page-title-main">Repressor</span> Sort of RNA-binding protein in molecular genetics

In molecular genetics, a repressor is a DNA- or RNA-binding protein that inhibits the expression of one or more genes by binding to the operator or associated silencers. A DNA-binding repressor blocks the attachment of RNA polymerase to the promoter, thus preventing transcription of the genes into messenger RNA. An RNA-binding repressor binds to the mRNA and prevents translation of the mRNA into protein. This blocking or reducing of expression is called repression.

<span class="mw-page-title-main">Leucine zipper</span> DNA-binding structural motif

A leucine zipper is a common three-dimensional structural motif in proteins. They were first described by Landschulz and collaborators in 1988 when they found that an enhancer binding protein had a very characteristic 30-amino acid segment and the display of these amino acid sequences on an idealized alpha helix revealed a periodic repetition of leucine residues at every seventh position over a distance covering eight helical turns. The polypeptide segments containing these periodic arrays of leucine residues were proposed to exist in an alpha-helical conformation and the leucine side chains from one alpha helix interdigitate with those from the alpha helix of a second polypeptide, facilitating dimerization.

A DNA-binding domain (DBD) is an independently folded protein domain that contains at least one structural motif that recognizes double- or single-stranded DNA. A DBD can recognize a specific DNA sequence or have a general affinity to DNA. Some DNA-binding domains may also include nucleic acids in their folded structure.

<span class="mw-page-title-main">TetR</span>

Tet Repressor proteins are proteins playing an important role in conferring antibiotic resistance to large categories of bacterial species.

<span class="mw-page-title-main">Ribonuclease P</span> Class of enzymes

Ribonuclease P is a type of ribonuclease which cleaves RNA. RNase P is unique from other RNases in that it is a ribozyme – a ribonucleic acid that acts as a catalyst in the same way that a protein-based enzyme would. Its function is to cleave off an extra, or precursor, sequence of RNA on tRNA molecules. Further, RNase P is one of two known multiple turnover ribozymes in nature, the discovery of which earned Sidney Altman and Thomas Cech the Nobel Prize in Chemistry in 1989: in the 1970s, Altman discovered the existence of precursor tRNA with flanking sequences and was the first to characterize RNase P and its activity in processing of the 5' leader sequence of precursor tRNA. Recent findings also reveal that RNase P has a new function. It has been shown that human nuclear RNase P is required for the normal and efficient transcription of various small noncoding RNAs, such as tRNA, 5S rRNA, SRP RNA and U6 snRNA genes, which are transcribed by RNA polymerase III, one of three major nuclear RNA polymerases in human cells.

<span class="mw-page-title-main">Sterol regulatory element-binding protein</span> Protein family

Sterol regulatory element-binding proteins (SREBPs) are transcription factors that bind to the sterol regulatory element DNA sequence TCACNCCAC. Mammalian SREBPs are encoded by the genes SREBF1 and SREBF2. SREBPs belong to the basic-helix-loop-helix leucine zipper class of transcription factors. Unactivated SREBPs are attached to the nuclear envelope and endoplasmic reticulum membranes. In cells with low levels of sterols, SREBPs are cleaved to a water-soluble N-terminal domain that is translocated to the nucleus. These activated SREBPs then bind to specific sterol regulatory element DNA sequences, thus upregulating the synthesis of enzymes involved in sterol biosynthesis. Sterols in turn inhibit the cleavage of SREBPs and therefore synthesis of additional sterols is reduced through a negative feed back loop.

<span class="mw-page-title-main">Alpha solenoid</span>

An alpha solenoid is a protein fold composed of repeating alpha helix subunits, commonly helix-turn-helix motifs, arranged in antiparallel fashion to form a superhelix. Alpha solenoids are known for their flexibility and plasticity. Like beta propellers, alpha solenoids are a form of solenoid protein domain commonly found in the proteins comprising the nuclear pore complex. They are also common in membrane coat proteins known as coatomers, such as clathrin, and in regulatory proteins that form extensive protein-protein interactions with their binding partners. Examples of alpha solenoid structures binding RNA and lipids have also been described.

<span class="mw-page-title-main">Signal recognition particle receptor</span>

Signal recognition particle (SRP) receptor, also called the docking protein, is a dimer composed of 2 different subunits that are associated exclusively with the rough ER in mammalian cells. Its main function is to identify the SRP units. SRP is a molecule that helps the ribosome-mRNA-polypeptide complexes to settle down on the membrane of the endoplasmic reticulum.

<span class="mw-page-title-main">LSm</span> Family of RNA-binding proteins

In molecular biology, LSm proteins are a family of RNA-binding proteins found in virtually every cellular organism. LSm is a contraction of 'like Sm', because the first identified members of the LSm protein family were the Sm proteins. LSm proteins are defined by a characteristic three-dimensional structure and their assembly into rings of six or seven individual LSm protein molecules, and play a large number of various roles in mRNA processing and regulation.

<span class="mw-page-title-main">Small nucleolar RNA U3</span>

In molecular biology, U3 snoRNA is a non-coding RNA found predominantly in the nucleolus. U3 has C/D box motifs that technically make it a member of the box C/D class of snoRNAs; however, unlike other C/D box snoRNAs, it has not been shown to direct 2'-O-methylation of other RNAs. Rather, U3 is thought to guide site-specific cleavage of ribosomal RNA (rRNA) during pre-rRNA processing.

<span class="mw-page-title-main">RNA recognition motif</span>

RNA recognition motif, RNP-1 is a putative RNA-binding domain of about 90 amino acids that are known to bind single-stranded RNAs. It was found in many eukaryotic proteins.

The RNA-binding Proteins Database (RBPDB) is a biological database of RNA-binding protein specificities that includes experimental observations of RNA-binding sites. The experimental results included are both in vitro and in vivo from primary literature. It includes four metazoan species, which are Homo sapiens, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans. RNA-binding domains included in this database are RNA recognition motif, K homology, CCCH zinc finger, and more domains. As of 2021, the latest RBPDB release includes 1,171 RNA-binding proteins.

<span class="mw-page-title-main">MutS-1</span>

MutS is a mismatch DNA repair protein, originally described in Escherichia coli.

<span class="mw-page-title-main">Archaeal transcription factor B</span> Protein family

Archaeal transcription factor B is a protein family of extrinsic transcription factors that guide the initiation of RNA transcription in organisms that fall under the domain of Archaea. It is homologous to eukaryotic TFIIB and, more distantly, to bacterial sigma factor. Like these proteins, it is involved in forming transcription preinitiation complexes. Its structure includes several conserved motifs which interact with DNA and other transcription factors, notably the single type of RNA polymerase that performs transcription in Archaea.

<span class="mw-page-title-main">BC200 lncRNA</span>

Brain cytoplasmic 200 long-noncoding RNA is a 200 nucleotide RNA transcript found predominantly in the brain with a primary function of regulating translation by inhibiting its initiation. As a long non-coding RNA, it belongs to a family of RNA transcripts that are not translated into protein (ncRNAs). Of these ncRNAs, lncRNAs are transcripts of 200 nucleotides or longer and are almost three times more prevalent than protein-coding genes. Nevertheless, only a few of the almost 60,000 lncRNAs have been characterized, and little is known about their diverse functions. BC200 is one lncRNA that has given insight into their specific role in translation regulation, and implications in various forms of cancer as well as Alzheimer's disease.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000276168 Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. 1 2 Ullu E, Tschudi C (1984). "Alu sequences are processed 7SL RNA genes". Nature. 312 (5990): 171–172. Bibcode:1984Natur.312..171U. doi:10.1038/312171a0. PMID   6209580. S2CID   4328237.
  4. 1 2 Rosenblad MA, Larsen N, Samuelsson T, Zwieb C (2009). "Kinship in the SRP RNA family". RNA Biology. 6 (5): 508–516. doi: 10.4161/rna.6.5.9753 . PMID   19838050.
  5. 1 2 3 4 Regalia M, Rosenblad MA, Samuelsson T (August 2002). "Prediction of signal recognition particle RNA genes". Nucleic Acids Research. 30 (15): 3368–3377. doi:10.1093/nar/gkf468. PMC   137091 . PMID   12140321.
  6. 1 2 3 Wild K, Weichenrieder O, Strub K, Sinning I, Cusack S (February 2002). "Towards the structure of the mammalian signal recognition particle". Current Opinion in Structural Biology. 12 (1): 72–81. doi:10.1016/S0959-440X(02)00292-0. PMID   11839493.
  7. 1 2 3 Batey RT, Rambo RP, Lucast L, Rha B, Doudna JA (February 2000). "Crystal structure of the ribonucleoprotein core of the signal recognition particle". Science. 287 (5456): 1232–1239. Bibcode:2000Sci...287.1232B. doi:10.1126/science.287.5456.1232. PMID   10678824.
  8. Batey RT, Sagar MB, Doudna JA (March 2001). "Structural and energetic analysis of RNA recognition by a universally conserved protein from the signal recognition particle". Journal of Molecular Biology. 307 (1): 229–246. doi:10.1006/jmbi.2000.4454. PMID   11243816.
  9. Bishop JM, Levinson WE, Sullivan D, Fanshier L, Quintrell N, Jackson J (December 1970). "The low molecular weight RNAs of Rous sarcoma virus. II. The 7 S RNA". Virology. 42 (4): 927–937. doi:10.1016/0042-6822(70)90341-7. PMID   4321311.
  10. Walker TA, Pace NR, Erikson RL, Erikson E, Behr F (September 1974). "The 7S RNA common to oncornaviruses and normal cells is associated with polyribosomes". Proceedings of the National Academy of Sciences of the United States of America. 71 (9): 3390–3394. Bibcode:1974PNAS...71.3390W. doi: 10.1073/pnas.71.9.3390 . PMC   433778 . PMID   4530311.
  11. Zieve G, Penman S (May 1976). "Small RNA species of the HeLa cell: metabolism and subcellular localization". Cell. 8 (1): 19–31. doi:10.1016/0092-8674(76)90181-1. PMID   954090. S2CID   26928799.
  12. Walter P, Ibrahimi I, Blobel G (November 1981). "Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein". The Journal of Cell Biology. 91 (2 Pt 1): 545–550. doi:10.1083/jcb.91.2.545. PMC   2111968 . PMID   7309795.
  13. Walter P, Blobel G (October 1982). "Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum". Nature. 299 (5885): 691–698. Bibcode:1982Natur.299..691W. doi:10.1038/299691a0. PMID   6181418. S2CID   4237513.
  14. Larsen N, Zwieb C (January 1991). "SRP-RNA sequence alignment and secondary structure". Nucleic Acids Research. 19 (2): 209–215. doi:10.1093/nar/19.2.209. PMC   333582 . PMID   1707519.
  15. Ullu E, Murphy S, Melli M (May 1982). "Human 7SL RNA consists of a 140 nucleotide middle-repetitive sequence inserted in an alu sequence". Cell. 29 (1): 195–202. doi:10.1016/0092-8674(82)90103-9. PMID   6179628. S2CID   12709599.
  16. Rosenblad MA, Samuelsson T (November 2004). "Identification of chloroplast signal recognition particle RNA genes". Plant & Cell Physiology. 45 (11): 1633–1639. doi: 10.1093/pcp/pch185 . PMID   15574839.
  17. Alm Rosenblad M, Martin MP, Tedersoo T, Ryberg MR, Larsson E, Wurzbacher C, Abarenkov K, Nilsson RH (2016). "Detection of signal recognition particle (SRP) RNAs in the nuclear ribosomal internal transcribed spacer 1 (ITS1) of three lineages of ectomycorrhizal fungi". MycoKeys. 13: 21–33. doi: 10.3897/mycokeys.13.8579 . hdl: 10261/163935 .
  18. Dieci G, Fiorino G, Castelnuovo M, Teichmann M, Pagano A (December 2007). "The expanding RNA polymerase III transcriptome". Trends in Genetics. 23 (12): 614–622. doi:10.1016/j.tig.2007.09.001. hdl: 11381/1706964 . PMID   17977614.
  19. Dieci G, Giuliodori S, Catellani M, Percudani R, Ottonello S (March 2002). "Intragenic promoter adaptation and facilitated RNA polymerase III recycling in the transcription of SCR1, the 7SL RNA gene of Saccharomyces cerevisiae". The Journal of Biological Chemistry. 277 (9): 6903–6914. doi: 10.1074/jbc.M105036200 . PMID   11741971.
  20. Bothwell, AL; Garber, RL; Altman, S (10 December 1976). "Nucleotide sequence and in vitro processing of a precursor molecule to Escherichia coli 4.5 S RNA". The Journal of Biological Chemistry. 251 (23): 7709–16. doi:10.1016/S0021-9258(17)32909-5. PMID   794064.
  21. Shan SO, Walter P (February 2005). "Co-translational protein targeting by the signal recognition particle". FEBS Letters. 579 (4): 921–926. doi: 10.1016/j.febslet.2004.11.049 . PMID   15680975. S2CID   46046514.
  22. Zwieb C, Eichler J (March 2002). "Getting on target: the archaeal signal recognition particle". Archaea. 1 (1): 27–34. doi: 10.1155/2002/729649 . PMC   2685543 . PMID   15803656.
  23. Ulbrandt ND, Newitt JA, Bernstein HD (January 1997). "The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins". Cell. 88 (2): 187–196. doi: 10.1016/S0092-8674(00)81839-5 . PMID   9008159. S2CID   15246619.
  24. Abell BM, Pool MR, Schlenker O, Sinning I, High S (July 2004). "Signal recognition particle mediates post-translational targeting in eukaryotes". The EMBO Journal. 23 (14): 2755–2764. doi:10.1038/sj.emboj.7600281. PMC   514945 . PMID   15229647.
  25. Schuenemann D, Gupta S, Persello-Cartieaux F, Klimyuk VI, Jones JD, Nussaume L, Hoffman NE (August 1998). "A novel signal recognition particle targets light-harvesting proteins to the thylakoid membranes". Proceedings of the National Academy of Sciences of the United States of America. 95 (17): 10312–10316. Bibcode:1998PNAS...9510312S. doi: 10.1073/pnas.95.17.10312 . PMC   21505 . PMID   9707644.
  26. Zwieb C, van Nues RW, Rosenblad MA, Brown JD, Samuelsson T (January 2005). "A nomenclature for all signal recognition particle RNAs". RNA. 11 (1): 7–13. doi:10.1261/rna.7203605. PMC   1370686 . PMID   15611297.
  27. Zwieb C (August 1992). "Recognition of a tetranucleotide loop of signal recognition particle RNA by protein SRP19". The Journal of Biological Chemistry. 267 (22): 15650–15656. doi: 10.1016/S0021-9258(19)49585-9 . PMID   1379233.
  28. 1 2 Hainzl T, Huang S, Sauer-Eriksson AE (June 2002). "Structure of the SRP19 RNA complex and implications for signal recognition particle assembly". Nature. 417 (6890): 767–771. Bibcode:2002Natur.417..767H. doi:10.1038/nature00768. PMID   12050674. S2CID   2509475.
  29. 1 2 Iakhiaeva E, Wower J, Wower IK, Zwieb C (June 2008). "The 5e motif of eukaryotic signal recognition particle RNA contains a conserved adenosine for the binding of SRP72". RNA. 14 (6): 1143–1153. doi:10.1261/rna.979508. PMC   2390789 . PMID   18441046.
  30. 1 2 Weichenrieder O, Wild K, Strub K, Cusack S (November 2000). "Structure and assembly of the Alu domain of the mammalian signal recognition particle". Nature. 408 (6809): 167–173. Bibcode:2000Natur.408..167W. doi:10.1038/35041507. PMID   11089964. S2CID   4427070.
  31. 1 2 Kuglstatter A, Oubridge C, Nagai K (2002). "Induced structural changes of 7SL RNA during the assembly of human signal recognition particle". Nat Struct Biol. 9 (10): 740–744. doi:10.1038/nsb843. PMID   12244299. S2CID   9543041.
  32. Walter P, Blobel G (September 1983). "Disassembly and reconstitution of signal recognition particle". Cell. 34 (2): 525–533. doi:10.1016/0092-8674(83)90385-9. PMID   6413076. S2CID   17907778.
  33. Politz JC, Yarovoi S, Kilroy SM, Gowda K, Zwieb C, Pederson T (January 2000). "Signal recognition particle components in the nucleolus". Proceedings of the National Academy of Sciences of the United States of America. 97 (1): 55–60. Bibcode:2000PNAS...97...55P. doi: 10.1073/pnas.97.1.55 . PMC   26615 . PMID   10618370.
  34. Brooks MA, Ravelli RB, McCarthy AA, Strub K, Cusack S (May 2009). "Structure of SRP14 from the Schizosaccharomyces pombe signal recognition particle". Acta Crystallographica Section D. 65 (Pt 5): 421–433. doi:10.1107/S0907444909005484. PMID   19390147.
  35. Liu L, Ben-Shlomo H, Xu YX, Stern MZ, Goncharov I, Zhang Y, Michaeli S (May 2003). "The trypanosomatid signal recognition particle consists of two RNA molecules, a 7SL RNA homologue and a novel tRNA-like molecule". The Journal of Biological Chemistry. 278 (20): 18271–18280. doi: 10.1074/jbc.M209215200 . PMID   12606550.
  36. Hann BC, Stirling CJ, Walter P (April 1992). "SEC65 gene product is a subunit of the yeast signal recognition particle required for its integrity". Nature. 356 (6369): 532–533. Bibcode:1992Natur.356..532H. doi:10.1038/356532a0. PMID   1313947. S2CID   4287636.
  37. Römisch K, Webb J, Herz J, Prehn S, Frank R, Vingron M, Dobberstein B (August 1989). "Homology of 54K protein of signal-recognition particle, docking protein and two E. coli proteins with putative GTP-binding domains" (PDF). Nature. 340 (6233): 478–482. Bibcode:1989Natur.340..478R. doi:10.1038/340478a0. PMID   2502717. S2CID   4343347.
  38. Bernstein HD, Poritz MA, Strub K, Hoben PJ, Brenner S, Walter P (August 1989). "Model for signal sequence recognition from amino-acid sequence of 54K subunit of signal recognition particle". Nature. 340 (6233): 482–486. Bibcode:1989Natur.340..482B. doi:10.1038/340482a0. PMID   2502718. S2CID   619959.
  39. Iakhiaeva E, Bhuiyan SH, Yin J, Zwieb C (June 2006). "Protein SRP68 of human signal recognition particle: identification of the RNA and SRP72 binding domains". Protein Science. 15 (6): 1290–1302. doi:10.1110/ps.051861406. PMC   2242529 . PMID   16672232.
  40. Iakhiaeva E, Yin J, Zwieb C (January 2005). "Identification of an RNA-binding domain in human SRP72". Journal of Molecular Biology. 345 (4): 659–666. doi:10.1016/j.jmb.2004.10.087. PMID   15588816.

Further reading