Sikorsky S-72

Last updated

S-72 RSRA
Sikorsky S-72 NASA 740 in flight.jpg
The S-72 in flight with a main rotor
RoleExperimental compound helicopter
Manufacturer Sikorsky Aircraft
First flight12 October 1976
Number built2

The Sikorsky S-72 was an experimental Sikorsky Aircraft compound helicopter developed as the Rotor Systems Research Aircraft (RSRA) for the National Aeronautics and Space Administration (NASA) and the United States Army. The RSRA was a testbed for rotor and propulsion systems for high-speed. [1]

Contents

Design and development

RSRA

The S-72 in flight without a main rotor in 1984 NASA RSRA in flight.jpg
The S-72 in flight without a main rotor in 1984

Sikorsky and Bell Helicopters competed for the RSRA contract. [1] Bell's preferred proposal was the "Bell 646A" with rotors based on the Bell 240 UTTAS; the alternative was the smaller "Bell 646B" based on the Bell 309 KingCobra. [2] Sikorsky proposed either a new aircraft [3] or a modified Sikorsky S-67 Blackhawk with the rotor and gearbox from the Sikorsky S-61. [4] Sikorsky won the contract for two aircraft in January 1974. [1] The modified S-67 became the S-72.[ citation needed ]

The S-72 could be fitted with wings and General Electric TF34 turbofans to allow compound helicopter configurations to be experimentally investigated at speeds up to 300 knots (560 km/h; 350 mph). In addition, it could fly as a fixed-wing aircraft without a main rotor. [5]

Unique among helicopters of its time, it was fitted with a crew emergency extraction system. This system, when activated, fired explosive bolts that severed the main rotor blades, escape panels were blown off the roof of the aircraft, then the crew seats were extracted using rockets. [6]

The RSRA was a pure research aircraft developed to fill the void between design analysis, wind tunnel testing, and flight results of rotor aircraft. The joint NASA/Army project began in December 1970, first flight on October 12, 1976, with the first of two aircraft arriving from Sikorsky to NASA on February 11, 1979.

One notable test performed with the RSRA was the use of the main and tail rotor load measurement system to determine the vertical drag of the airframe. [7]

In 1981, NASA and the US Army solicited proposals for fitting a four-bladed main rotor to the RSRA. Sikorsky proposed fitting a UH-60A main rotor to the RSRA in their proposal, [8] while Hughes Helicopters proposed fitting a YAH-64A main rotor, [9] and Boeing Vertol proposed fitting a YUH-61A or BV-347 main rotor. [10] In the end, this program did not proceed.[ citation needed ]

The X-Wing

Sikorsky S-72 modified as the X-Wing testbed Sikorsky X-wing diagonal view.jpg
Sikorsky S-72 modified as the X-Wing testbed

The X-Wing Circulation Control Rotor Concept was developed in the mid-1970s by the David W. Taylor Naval Ship Research and Development Center under DARPA funding. [11] In October 1976, Lockheed Corporation won a DARPA contract to develop a large-scale rotor to test the concept. [12]

The X-Wing was conceived to complement rather than replace helicopters and fixed-wing aircraft. The X-Wing was intended to be used in roles such as air-to-air and air-to-ground operations, as well as airborne early warning, search and rescue and anti-submarine warfare. These roles could take advantage of the aircraft's ability to hover and maneuver at low speeds and to cruise at high speeds. [13]

Intended to take off vertically like a helicopter, the craft's rigid rotors could be stopped in mid-flight to act as X-shaped wings to provide additional lift during forward flight, as well as having more conventional wings. Instead of controlling lift by altering the angle of attack of its blades as more conventional helicopters do, the craft used compressed air fed from the engines and expelled from its blades to generate a virtual wing surface, similar to blown flaps on a conventional platform. Computerized valves made sure the compressed air came from the correct edge of the rotor, the correct edge changing as the rotor rotated. [14]

In late 1983, Sikorsky received a contract to modify one S-72 RSRA into a demonstration testbed for the X-Wing rotor system. The modified airframe was rolled out in 1986. While many of the aircraft's technical issues had been resolved, with plans for it to begin flight tests with the rotor/wing system, it never flew. Budgetary requirements led to the program being canceled in 1988. [15] [16] [17]

Specifications (S-72)

Rotor Systems Research Aircraft / X-Wing aircraft during a 1987 high speed taxi test X-wing EC87-0271-001 NASA.jpg
Rotor Systems Research Aircraft / X-Wing aircraft during a 1987 high speed taxi test

Data from Jane's all the World's Aircraft 1977–78 [18]

General characteristics

Performance

See also

Related development

Aircraft of comparable role, configuration, and era

Related lists

Related Research Articles

The CarterCopter is an experimental compound autogyro developed by Carter Aviation Technologies in the United States to demonstrate slowed rotor technology. On 17 June 2005, the CarterCopter became the first rotorcraft to achieve mu-1 (μ=1), an equal ratio of airspeed to rotor tip speed, but crashed on the next flight and has been inoperable since. It is being replaced by the Carter Personal Air Vehicle.

<span class="mw-page-title-main">Bell XV-15</span> American experimental tiltrotor aircraft

The Bell XV-15 is an American tiltrotor VTOL aircraft. It was the second successful experimental tiltrotor aircraft and the first to demonstrate the concept's high speed performance relative to conventional helicopters.

<span class="mw-page-title-main">Sikorsky S-67 Blackhawk</span> Prototype attack helicopter

The Sikorsky S-67 Blackhawk was a private-venture, prototype attack helicopter built in 1970 with Sikorsky Aircraft research and development (R&D) funds. A tandem, two-seat aircraft designed around the dynamic drive and rotor systems of the Sikorsky S-61, it was designed to serve as an attack helicopter or to transport up to eight troops into combat.

<span class="mw-page-title-main">Boeing X-50 Dragonfly</span> US experimental drone aircraft

The Boeing X-50A Dragonfly, formerly known as the Canard Rotor/Wing Demonstrator, was a VTOL rotor wing experimental unmanned aerial vehicle that was developed by Boeing and DARPA to demonstrate the principle that a helicopter's rotor could be stopped in flight and act as a fixed wing, enabling it to transition between fixed-wing and rotary-wing flight.

<span class="mw-page-title-main">Lockheed AH-56 Cheyenne</span> Canceled US helicopter program

The Lockheed AH-56 Cheyenne is an attack helicopter developed by Lockheed for the United States Army. It rose from the Army's Advanced Aerial Fire Support System (AAFSS) program to field the service's first dedicated attack helicopter. Lockheed designed the Cheyenne using a four-blade rigid-rotor system and configured the aircraft as a compound helicopter with low-mounted wings and a tail-mounted thrusting propeller driven by a General Electric T64 turboshaft engine. The Cheyenne was to have a high-speed dash capability to provide armed escort for the Army's transport helicopters, such as the Bell UH-1 Iroquois.

<span class="mw-page-title-main">Helicopter rotor</span> Aircraft component

On a helicopter, the main rotor or rotor system is the combination of several rotary wings with a control system, that generates the aerodynamic lift force that supports the weight of the helicopter, and the thrust that counteracts aerodynamic drag in forward flight. Each main rotor is mounted on a vertical mast over the top of the helicopter, as opposed to a helicopter tail rotor, which connects through a combination of drive shaft(s) and gearboxes along the tail boom. The blade pitch is typically controlled by the pilot using the helicopter flight controls. Helicopters are one example of rotary-wing aircraft (rotorcraft). The name is derived from the Greek words helix, helik-, meaning spiral; and pteron meaning wing.

<span class="mw-page-title-main">Rotorcraft</span> Heavier-than-air aircraft which generates lift over rotating wings

A rotorcraft or rotary-wing aircraft is a heavier-than-air aircraft with rotary wings or rotor blades, which generate lift by rotating around a vertical mast. Several rotor blades mounted on a single mast are referred to as a rotor. The International Civil Aviation Organization (ICAO) defines a rotorcraft as "supported in flight by the reactions of the air on one or more rotors".

A convertiplane is defined by the Fédération Aéronautique Internationale as an aircraft which uses rotor power for vertical takeoff and landing (VTOL) and converts to fixed-wing lift in normal flight. In the US it is further classified as a sub-type of powered lift. In popular usage it sometimes includes any aircraft that converts in flight to change its method of obtaining lift.

<span class="mw-page-title-main">Bell 533</span> Research helicopter built by Bell Helicopter

The Bell 533 was a research helicopter built by Bell Helicopter under contract with the United States Army during the 1960s, to explore the limits and conditions experienced by helicopter rotors at high airspeeds. The helicopter was a YH-40—a preproduction version of the UH-1 Iroquois—modified and tested in several helicopter and compound helicopter configurations. The Bell 533 was referred to as the High Performance Helicopter (HPH) by the Army, and reached a top speed of 274.6 knots in 1969, before being retired.

<span class="mw-page-title-main">Lockheed XH-51</span> 1962 experimental helicopter series by Lockheed

The Lockheed XH-51 was an American single-engine experimental helicopter designed by Lockheed Aircraft, utilizing a rigid rotor and retractable skid landing gear. The XH-51 was selected as the test vehicle for a joint research program conducted by the United States Army and United States Navy to explore rigid rotor technology.

<span class="mw-page-title-main">Sikorsky S-69</span> US experimental co-axial compound helicopter

The Sikorsky S-69 is an American experimental compound helicopter developed by Sikorsky Aircraft as the demonstrator of the co-axial Advancing Blade Concept (ABC) with United States Army and NASA funding.

<span class="mw-page-title-main">Sikorsky X2</span> Experimental high-speed compound helicopter

The Sikorsky X2 is an experimental high-speed compound helicopter with coaxial rotors, developed by Sikorsky Aircraft, that made its first flight in 2008 and was officially retired in 2011.

<span class="mw-page-title-main">McDonnell XV-1</span> American experimental gyrodyne

The McDonnell XV-1 is an experimental Convertiplane developed by McDonnell Aircraft for a joint research program between the United States Air Force and the United States Army to explore technologies to develop an aircraft that could take off and land like a helicopter but fly at faster airspeeds, similar to a conventional airplane. The XV-1 would reach a speed of 200 mph, faster than any previous rotorcraft, but the program was terminated due to the tip-jet noise and complexity of the technology which gave only a modest gain in performance.

<span class="mw-page-title-main">Slowed rotor</span> Helicopter design variant

The slowed rotor principle is used in the design of some helicopters. On a conventional helicopter the rotational speed of the rotor is constant; reducing it at lower flight speeds can reduce fuel consumption and enable the aircraft to fly more economically. In the compound helicopter and related aircraft configurations such as the gyrodyne and winged autogyro, reducing the rotational speed of the rotor and offloading part of its lift to a fixed wing reduces drag, enabling the aircraft to fly faster.

<span class="mw-page-title-main">Sikorsky XV-2</span> American VTOL aircraft proposal

The Sikorsky XV-2, also known by the Sikorsky Aircraft model number S-57, was a planned experimental stoppable rotor aircraft, designated as a convertiplane, developed for a joint research program between the United States Air Force and the United States Army. The program was canceled before construction of the prototype began.

<span class="mw-page-title-main">Sikorsky S-97 Raider</span> American high-speed scout and attack compound helicopter

The Sikorsky S-97 Raider is a high-speed scout and attack compound helicopter based on the Advancing Blade Concept (ABC) with a coaxial rotor system under development by Sikorsky Aircraft. Sikorsky planned to offer it for the United States Army's Armed Aerial Scout program, along with other possible uses. The S-97 made its maiden flight on 22 May 2015.

<span class="mw-page-title-main">VTOL X-Plane</span> American experimental aircraft

The Vertical Take-Off and Landing Experimental Aircraft program is an American research project sponsored by the Defense Advanced Research Projects Agency (DARPA). The goal of the program is to demonstrate a VTOL aircraft design that can take off vertically and efficiently hover, while flying faster than conventional rotorcraft. There have been many previous attempts, most of them unsuccessful.

The Sikorsky S-73 was a proposed aircraft design to meet the United States Army requirement in 1970 for a Heavy Lift Helicopter (HLH) capable of carrying 45,000 lb, a lifting capacity more than twice that of Sikorsky's most powerful helicopter at that time.

A cruciform wing is a set of four individual wings arranged in the shape of a cross. The cross may take either of two forms; the wings may be equally spaced around the cross-section of the fuselage, lying in two planes at right angles, as on a typical missile, or they may lie together in a single horizontal plane about a vertical axis, as in the cruciform rotor wing or X-wing.

References

Citations

  1. 1 2 3 Robb 2006, p. 50.
  2. Bell Helicopter Company 1972, pp. 1–2.
  3. Schmidt & Linden 1972a, pp. 2–3.
  4. Schmidt & Linden 1972a, pp. 3–4.
  5. Schmidt, Steven A.; Linden, Arthur W. (1972). Rotor systems research aircraft predesign study. Volume 3: Predesign report. NASA. hdl:2060/19720025366.[ page needed ]
  6. Bement, L. J. (1978). Rotor Systems Research Aircraft Emergency Escape System. 34th Annual National Forum. American Helicopter Society.
  7. Flemming, R. J. (1981). RSRA vertical drag test report. NASA. hdl:2060/19820024465.[ page needed ]
  8. Davis, S. J. (1981). Predesign study for a modern 4-bladed rotor for RSRA. NASA. hdl:2060/19830004795.[ page needed ]
  9. Hughes, C. W.; Logan, A. H. (1981). Pre-design study for a modern four-bladed rotor for the Rotor System Research Aircraft (RSRA). NASA. hdl:2060/19820008170.[ page needed ]
  10. Bishop, H. E.; Burkam, J. E.; Heminway, R. C.; Keys, C. N.; Smith, K. E.; Smith, J. H.; Staley, J. A. (1981). Predesign study for a modern four-bladed rotor for the NASA rotor systems research aircraft. NASA. hdl:2060/19820008169.[ page needed ]
  11. Warwick, Graham (August 9, 2008). "X-Wing". DARPA 50th Anniversary Gallery. Aviation Week & Space Technology . Retrieved October 26, 2012.[ dead link ]
  12. Carlisle, Rodney P. (1998). Where the Fleet Begins: A History of the David Taylor Research Center, 1898–1998. Department of the Navy. pp. 373–9. ISBN   0-160494-427.
  13. Ruby Calzada, X-Wing, NASA, 03.09.1996
  14. Reader, Kenneth R; Wilkerson, Joseph B (2008) [1976]. Circulation Control Applied to a High Speed Helicopter Rotor. David W. Taylor Naval Ship Research and Development Center. Archived from the original on February 2, 2017.[ page needed ]
  15. "X-Wing scheduled to fly in October" (PDF). Flight International: 18. 22 February 1986.
  16. "Darpa ditches X-Wing" (PDF). Flight International: 2. 16 January 1988.
  17. Art Linden, Ken Rosen and Andy Whyte X-Wing, Sikorsky Historical Archives, March 2013
  18. Taylor, John W.R.; Munson, Kenneth, eds. (1977). Jane's all the World's Aircraft 1977–78 (68th ed.). London: Jane's Yearbooks. pp. 409–410. ISBN   9780531032787.
  19. Lednicer, David. "The Incomplete Guide to Airfoil Usage". m-selig.ae.illinois.edu. Retrieved 16 April 2019.

Sources