Single-pass bore finishing

Last updated

Single-pass bore finishing is a machining process similar to honing to finish a bore, except the tool only takes a single pass. The process was originally developed to improve bore quality in cast iron workpieces. [1]

Machining Material-removal process; manufacturing process

Machining is any of various processes in which a piece of raw material is cut into a desired final shape and size by a controlled material-removal process. The processes that have this common theme, controlled material removal, are today collectively known as subtractive manufacturing, in distinction from processes of controlled material addition, which are known as additive manufacturing. Exactly what the "controlled" part of the definition implies can vary, but it almost always implies the use of machine tools.

Honing (metalworking) abrasive machining process that produces a precision surface

Honing is an abrasive machining process that produces a precision surface on a metal workpiece by scrubbing an abrasive stone against it along a controlled path. Honing is primarily used to improve the geometric form of a surface, but may also improve the surface texture.

Cast iron iron or a ferrous alloy which has been liquefied then poured into a mould to solidify

Cast iron is a group of iron-carbon alloys with a carbon content greater than 2%. Its usefulness derives from its relatively low melting temperature. The alloy constituents affect its colour when fractured: white cast iron has carbide impurities which allow cracks to pass straight through, grey cast iron has graphite flakes which deflect a passing crack and initiate countless new cracks as the material breaks, and ductile cast iron has spherical graphite "nodules" which stop the crack from further progressing.

Contents

Process

This process uses multiple diamond-plated, barrel-shaped tools to finish a bore. The tool has a single layer of diamonds bonded to the tool, with about half of each diamond exposed. These special tools are made to a specific diameter and are only meant to open up the hole to that size. [2]

Diamond Allotrope of carbon often used as a gemstone and an abrasive

Diamond is a solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. At room temperature and pressure, another solid form of carbon known as graphite is the chemically stable form, but diamond almost never converts to it. Diamond has the highest hardness and thermal conductivity of any natural material, properties that are utilized in major industrial applications such as cutting and polishing tools. They are also the reason that diamond anvil cells can subject materials to pressures found deep in the Earth.

The tools are usually mounted in a dedicated bore finishing machine, however they can also be mounted in a milling machine. In either case the tool, workpiece, or both are rotated and the tool is plunged into the bore and removed. The part is then transferred to the next station or a larger tool is mounted and a larger bore machined, and the process repeated until the desired bore geometry is reached. The number of tools required to achieve the desired bore size is dependent on the workpiece material, the amount of stock to be removed and geometrical requirements, with four to six tool pieces being common. Each tool is progressively larger than the last, but in diminishing increments; as the stock removal is reduced, so is the tool's diamond grit size. [2]

The process is similar to honing, in that the tool follows the existing center line of the bore. To make sure the tool follows the existing center line, the tool, workpiece, or both are allowed to float. Usually just the workpiece is floated, but both pieces may be floated to get the tightest tolerances, however this greatly increases complexity. For workpieces that are larger than approximately 1 kg (2.2 lb) it may be more feasible to float the tool. [2] The process can achieve a size tolerance of 0.001 mm (3.9×10−5 in) and a geometry tolerance of 0.0003 mm (1.2×10−5 in) in production. [3]

Machine tool

Single-pass bore finishing is not usually done in a milling machine for several reasons. Firstly, most milling machines have only one spindle, so changing the tool more than four to six times can increase cycle times significantly. Secondly, most workpieces that require this process are made on horizontal machining centers (HMC), which reduces float-ability due to gravity. Thirdly, the lubrication may not be sufficient, which can lead to material build-up between diamonds, diminishing the tool's effectiveness. Finally, if any chips remain from previous operations they can ruin the tool. [2]

Instead, typically a dedicated machine tool is used. It has four to eight spindles and usually a rotary table. The cycle time for this type of setup is determined by the longest individual operation, which in this situation is determined by how long it takes to plunge and retract the tool through the bore. Throughput can be increased by completing two workpieces on each cycle; this is achieved by having two identical stations for each tool size so that two workpieces can be operated on concurrently. [2]

Advantages and disadvantages

There is little downtime due to tool changes because tools usually last from tens of thousands of passes to over a million. The perishable tool cost can be as low as a 0.01 USD per bore for very large quantity runs. To make the process cost effective minimum runs would be on the order of one to two hundred parts with several runs each year. [2]

Single-pass bore finishing is not well suited for blind holes because the tool has a tapered lead on it which prevents the bottom of the hole from being finished. The process can be performed on blind holes, but it requires an alternative tool design and suitable manufacturing conditions. A better alternative is ID grinding. [1] [2]

Commonly processed materials include soft and hard steels, aluminum, bronze, brass, ceramics, and chrome. Note that gummy grades of stainless steel, aluminum, and all but the hardest grades of plastic are much tougher for this process. The gumminess problem can be overcome with special oil based cutting fluids. Also, the process does not work well on thin-walled workpieces owing to a tendency to expand when the tool is inserted. [2]

This method of bore finishing is better suited for bores with relatively low length-to-diameter ratios, usually less than 2:1. However, if there are cross-holes, or other interruptions in the bore, then a ratio greater than 2:1 is possible, because swarf and fluids may be expelled via these routes. This process is also not well suited for surfaces that require cross-hatching. [2]

Related Research Articles

Electrical discharge machining

Electrical discharge machining (EDM), also known as spark machining, spark eroding, burning, die sinking, wire burning or wire erosion, is a manufacturing process whereby a desired shape is obtained by using electrical discharges (sparks). Material is removed from the work piece by a series of rapidly recurring current discharges between two electrodes, separated by a dielectric liquid and subject to an electric voltage. One of the electrodes is called the tool-electrode, or simply the "tool" or "electrode," while the other is called the workpiece-electrode, or "work piece." The process depends upon the tool and work piece not making actual contact.

Metalworking process of making items from metal; production and processing of shaped workpieces made of metals

Metalworking is the process of working with metals to create individual parts, assemblies, or large-scale structures. The term covers a wide range of work from large ships and bridges to precise engine parts and delicate jewelry. It therefore includes a correspondingly wide range of skills, processes, and tools.

Drill bit

Drill bits are cutting tools used to remove material to create holes, almost always of circular cross-section. Drill bits come in many sizes and shapes and can create different kinds of holes in many different materials. In order to create holes drill bits are usually attached to a drill, which powers them to cut through the workpiece, typically by rotation. The drill will grasp the upper end of a bit called the shank in the chuck.

Broaching is a machining process that uses a toothed tool, called a broach, to remove material. There are two main types of broaching: linear and rotary. In linear broaching, which is the more common process, the broach is run linearly against a surface of the workpiece to effect the cut. Linear broaches are used in a broaching machine, which is also sometimes shortened to broach. In rotary broaching, the broach is rotated and pressed into the workpiece to cut an axisymmetric shape. A rotary broach is used in a lathe or screw machine. In both processes the cut is performed in one pass of the broach, which makes it very efficient.

Drilling cutting process that uses a drill bit to cut a hole of circular cross-section in solid materials

Drilling is a cutting process that uses a drill bit to cut a hole of circular cross-section in solid materials. The drill bit is usually a rotary cutting tool, often multi-point. The bit is pressed against the work-piece and rotated at rates from hundreds to thousands of revolutions per minute. This forces the cutting edge against the work-piece, cutting off chips (swarf) from the hole as it is drilled.

A reamer is a type of rotary cutting tool used in metalworking. Precision reamers are designed to enlarge the size of a previously formed hole by a small amount but with a high degree of accuracy to leave smooth sides. There are also non-precision reamers which are used for more basic enlargement of holes or for removing burrs. The process of enlarging the hole is called reaming. There are many different types of reamer and they may be designed for use as a hand tool or in a machine tool, such as a milling machine or drill press.

Countersink type of conical-shaped cutter used to cut holes in materials

A countersink is a conical hole cut into a manufactured object, or the cutter used to cut such a hole. A common use is to allow the head of a countersunk bolt, screw or rivet, when placed in the hole, to sit flush with or below the surface of the surrounding material. A countersink may also be used to remove the burr left from a drilling or tapping operation thereby improving the finish of the product and removing any hazardous sharp edges.

Turning machining technique acting on rotated objects

Turning is a machining process in which a cutting tool, typically a non-rotary tool bit, describes a helix toolpath by moving more or less linearly while the workpiece rotates.

Metal lathe lathe designed for precisely machining relatively hard materials

A metal lathe or metalworking lathe is a large class of lathes designed for precisely machining relatively hard materials. They were originally designed to machine metals; however, with the advent of plastics and other materials, and with their inherent versatility, they are used in a wide range of applications, and a broad range of materials. In machining jargon, where the larger context is already understood, they are usually simply called lathes, or else referred to by more-specific subtype names. These rigid machine tools remove material from a rotating workpiece via the movements of various cutting tools, such as tool bits and drill bits.

Boring (manufacturing) process of enlarging a hole that has already been drilled

In machining, boring is the process of enlarging a hole that has already been drilled by means of a single-point cutting tool, such as in boring a gun barrel or an engine cylinder. Boring is used to achieve greater accuracy of the diameter of a hole, and can be used to cut a tapered hole. Boring can be viewed as the internal-diameter counterpart to turning, which cuts external diameters.

Superfinishing, also known as micromachining, microfinishing, and short-stroke honing, is a metalworking process that improves surface finish and workpiece geometry. This is achieved by removing just the thin amorphous surface layer left by the last process with an abrasive stone or tape; this layer is usually about 1 μm in magnitude. Superfinishing, unlike polishing which produces a mirror finish, creates a cross-hatch pattern on the workpiece.

Skiving or scarfing is the process of cutting material off in slices, usually metal, but also leather or laminates. Skiving is used instead of rolling the material to shape when the material must not be work hardened, or must not shed minute slivers of metal later which is common in cold rolling processes.

Abrasive machining is a machining process where material is removed from a workpiece using a multitude of small abrasive particles. Common examples include grinding, honing, and polishing. Abrasive processes are usually expensive, but capable of tighter tolerances and better surface finish than other machining processes

Grinding (abrasive cutting) abrasive machining process that uses a grinding wheel as the cutting tool


Grinding is an abrasive machining process that uses a grinding wheel as the cutting tool.

Burnishing (metal)

Burnishing is the plastic deformation of a surface due to sliding contact with another object. It smooths the surface and makes it shinier. Burnishing may occur on any sliding surface if the contact stress locally exceeds the yield strength of the material. The phenomenon can occur both unintentionally as a failure mode, and intentionally as part of a manufacturing process. It is a squeezing operation under cold working.

Spotface machined feature in which a region of the workpiece is faced, providing a flat, accurately located surface

A spotface or spot face is a machined feature in which a certain region of the workpiece is faced, providing a smooth, flat, accurately located surface. This is especially relevant on workpieces cast or forged, where the spotface's smooth, flat, accurately located surface stands in distinction to the surrounding surface whose roughness, flatness, and location are subject to wider tolerances and thus not assured with a machining level of precision. The most common application of spotfacing is facing the area around a bolt hole where the bolt's head will sit, which is often done by cutting a shallow counterbore, just deep enough "to clean up"—that is, only enough material is removed to get down past any irregularity and thus make the surface flat. Other common applications of spotfacing involve facing a pad onto a boss, creating planar surfaces in known locations that can orient a casting or forging into position in the assembly; allow part marking such as stamping or nameplate riveting; or offer machine-finish visual appeal in spots, without the need for finishing all over (FAO).

Threading is the process of creating a screw thread. More screw threads are produced each year than any other machine element. There are many methods of generating threads, including subtractive methods ; deformative or transformative methods ; additive methods ; or combinations thereof.

Milling (machining) machining process

Milling is the process of machining using rotary cutters to remove material by advancing a cutter into a workpiece. This may be done varying direction on one or several axes, cutter head speed, and pressure. Milling covers a wide variety of different operations and machines, on scales from small individual parts to large, heavy-duty gang milling operations. It is one of the most commonly used processes for machining custom parts to precise tolerances.

References

  1. 1 2 Marvin, Robert (July 2006), "Advance in Single-Pass Bore Finishing" (PDF), Gear solutions: 38–43.
  2. 1 2 3 4 5 6 7 8 9 Richter, Alan (April 2006), "Speed Pass" (PDF), Cutting Tool Engineering, 58 (4).
  3. Nikhil Nayak (28 February 2008). "Single-Pass Bore Finishing from Engis Corp USA" . Retrieved 22 September 2009.