Small-angle approximation

Last updated
Approximately equal behavior of some (trigonometric) functions for x - 0 Kleinwinkelnaeherungen.png
Approximately equal behavior of some (trigonometric) functions for x → 0

The small-angle approximations can be used to approximate the values of the main trigonometric functions, provided that the angle in question is small and is measured in radians:

Contents

These approximations have a wide range of uses in branches of physics and engineering, including mechanics, electromagnetism, optics, cartography, astronomy, and computer science. [1] [2] One reason for this is that they can greatly simplify differential equations that do not need to be answered with absolute precision.

There are a number of ways to demonstrate the validity of the small-angle approximations. The most direct method is to truncate the Maclaurin series for each of the trigonometric functions. Depending on the order of the approximation, is approximated as either or as . [3]

Justifications

Graphic

The accuracy of the approximations can be seen below in Figure 1 and Figure 2. As the measure of the angle approaches zero, the difference between the approximation and the original function also approaches 0.

Geometric

Small angle triangle.svg The red section on the right, d, is the difference between the lengths of the hypotenuse, H, and the adjacent side, A. As is shown, H and A are almost the same length, meaning cos θ is close to 1 and θ2/2 helps trim the red away.

The opposite leg, O, is approximately equal to the length of the blue arc, s. Gathering facts from geometry, s = , from trigonometry, sin θ = O/H and tan θ = O/A, and from the picture, Os and HA leads to:

Simplifying leaves,

Calculus

Using the squeeze theorem, [4] we can prove that

which is a formal restatement of the approximation for small values of θ. A more careful application of the squeeze theorem proves that

from which we conclude that for small values of θ. Finally, L'Hôpital's rule tells us that

which rearranges to for small values of θ. Alternatively, we can use the double angle formula . By letting , we get that .

Algebraic

The small-angle approximation for the sine function. Small-angle approximation for sine function.svg
The small-angle approximation for the sine function.

The Maclaurin expansion (the Taylor expansion about 0) of the relevant trigonometric function is [5]

where θ is the angle in radians. In clearer terms,

It is readily seen that the second most significant (third-order) term falls off as the cube of the first term; thus, even for a not-so-small argument such as 0.01, the value of the second most significant term is on the order of 0.000001, or 1/10000 the first term. One can thus safely approximate:

By extension, since the cosine of a small angle is very nearly 1, and the tangent is given by the sine divided by the cosine,

Dual numbers

One may also use dual numbers, defined as numbers in the form , with and satisfying by definition and . By using the MacLaurin series of cosine and sine, one can show that and . Furthermore, it is not hard to prove that the Pythagorean identity holds:

Error of the approximations

Figure 3. A graph of the relative errors for the small angle approximations. Small angle compare error.svg
Figure 3. A graph of the relative errors for the small angle approximations.

Figure 3 shows the relative errors of the small angle approximations. The angles at which the relative error exceeds 1% are as follows:

Angle sum and difference

The angle addition and subtraction theorems reduce to the following when one of the angles is small (β ≈ 0):

cos(α + β)≈ cos(α) − β sin(α),
cos(αβ)≈ cos(α) + β sin(α),
sin(α + β)≈ sin(α) + β cos(α),
sin(αβ)≈ sin(α) − β cos(α).

Specific uses

Astronomy

In astronomy, the angular size or angle subtended by the image of a distant object is often only a few arcseconds (denoted by the symbol ″), so it is well suited to the small angle approximation. [6] The linear size (D) is related to the angular size (X) and the distance from the observer (d) by the simple formula:

where X is measured in arcseconds.

The quantity 206265 is approximately equal to the number of arcseconds in a circle (1296000), divided by , or, the number of arcseconds in 1 radian.

The exact formula is

and the above approximation follows when tan X is replaced by X.

Motion of a pendulum

The second-order cosine approximation is especially useful in calculating the potential energy of a pendulum, which can then be applied with a Lagrangian to find the indirect (energy) equation of motion.

When calculating the period of a simple pendulum, the small-angle approximation for sine is used to allow the resulting differential equation to be solved easily by comparison with the differential equation describing simple harmonic motion.

Optics

In optics, the small-angle approximations form the basis of the paraxial approximation.

Wave Interference

The sine and tangent small-angle approximations are used in relation to the double-slit experiment or a diffraction grating to develop simplified equations like the following, where y is the distance of a fringe from the center of maximum light intensity, m is the order of the fringe, D is the distance between the slits and projection screen, and d is the distance between the slits: [7]

Structural mechanics

The small-angle approximation also appears in structural mechanics, especially in stability and bifurcation analyses (mainly of axially-loaded columns ready to undergo buckling). This leads to significant simplifications, though at a cost in accuracy and insight into the true behavior.

Piloting

The 1 in 60 rule used in air navigation has its basis in the small-angle approximation, plus the fact that one radian is approximately 60 degrees.

Interpolation

The formulas for addition and subtraction involving a small angle may be used for interpolating between trigonometric table values:

Example: sin(0.755)

where the values for sin(0.75) and cos(0.75) are obtained from trigonometric table. The result is accurate to the four digits given.

See also

Related Research Articles

<span class="mw-page-title-main">Euler's formula</span> Complex exponential in terms of sine and cosine

Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that, for any real number x, one has

<span class="mw-page-title-main">Trigonometric functions</span> Functions of an angle

In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.

<span class="mw-page-title-main">Trigonometric tables</span> Overview about trigonometric tables

In mathematics, tables of trigonometric functions are useful in a number of areas. Before the existence of pocket calculators, trigonometric tables were essential for navigation, science and engineering. The calculation of mathematical tables was an important area of study, which led to the development of the first mechanical computing devices.

<span class="mw-page-title-main">Squeeze theorem</span> Method for finding limits in calculus

In calculus, the squeeze theorem is a theorem regarding the limit of a function that is trapped between two other functions.

<span class="mw-page-title-main">Inverse trigonometric functions</span> Inverse functions of sin, cos, tan, etc.

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.

<span class="mw-page-title-main">Tangent half-angle formula</span> Relates the tangent of half of an angle to trigonometric functions of the entire angle

In trigonometry, tangent half-angle formulas relate the tangent of half of an angle to trigonometric functions of the entire angle. The tangent of half an angle is the stereographic projection of the circle through the point at angle radians onto the line through the angles . Among these formulas are the following:

The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae, it is one of the basic relations between the sine and cosine functions.

<span class="mw-page-title-main">Arc length</span> Distance along a curve

Arc length is the distance between two points along a section of a curve.

Angular distance or angular separation is the measure of the angle between the orientation of two straight lines, rays, or vectors in three-dimensional space, or the central angle subtended by the radii through two points on a sphere. When the rays are lines of sight from an observer to two points in space, it is known as the apparent distance or apparent separation.

<span class="mw-page-title-main">Spherical law of cosines</span> Mathematical relation in spherical triangles

In spherical trigonometry, the law of cosines is a theorem relating the sides and angles of spherical triangles, analogous to the ordinary law of cosines from plane trigonometry.

<span class="mw-page-title-main">Sine and cosine</span> Fundamental trigonometric functions

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted as and .

<span class="mw-page-title-main">Pendulum (mechanics)</span> Free swinging suspended body

A pendulum is a body suspended from a fixed support so that it swings freely back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back towards the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging it back and forth. The mathematics of pendulums are in general quite complicated. Simplifying assumptions can be made, which in the case of a simple pendulum allow the equations of motion to be solved analytically for small-angle oscillations.

There are several equivalent ways for defining trigonometric functions, and the proofs of the trigonometric identities between them depend on the chosen definition. The oldest and most elementary definitions are based on the geometry of right triangles. The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles, see Trigonometric functions.

<span class="mw-page-title-main">Differentiation of trigonometric functions</span> Mathematical process of finding the derivative of a trigonometric function

The differentiation of trigonometric functions is the mathematical process of finding the derivative of a trigonometric function, or its rate of change with respect to a variable. For example, the derivative of the sine function is written sin′(a) = cos(a), meaning that the rate of change of sin(x) at a particular angle x = a is given by the cosine of that angle.

<span class="mw-page-title-main">Exact trigonometric values</span> Trigonometric numbers in terms of square roots

In mathematics, the values of the trigonometric functions can be expressed approximately, as in , or exactly, as in . While trigonometric tables contain many approximate values, the exact values for certain angles can be expressed by a combination of arithmetic operations and square roots. The angles with trigonometric values that are expressible in this way are exactly those that can be constructed with a compass and straight edge, and the values are called constructible numbers.

<span class="mw-page-title-main">Potential flow around a circular cylinder</span> Classical solution for inviscid, incompressible flow around a cyclinder

In mathematics, potential flow around a circular cylinder is a classical solution for the flow of an inviscid, incompressible fluid around a cylinder that is transverse to the flow. Far from the cylinder, the flow is unidirectional and uniform. The flow has no vorticity and thus the velocity field is irrotational and can be modeled as a potential flow. Unlike a real fluid, this solution indicates a net zero drag on the body, a result known as d'Alembert's paradox.

The table of chords, created by the Greek astronomer, geometer, and geographer Ptolemy in Egypt during the 2nd century AD, is a trigonometric table in Book I, chapter 11 of Ptolemy's Almagest, a treatise on mathematical astronomy. It is essentially equivalent to a table of values of the sine function. It was the earliest trigonometric table extensive enough for many practical purposes, including those of astronomy. Since the 8th and 9th centuries, the sine and other trigonometric functions have been used in Islamic mathematics and astronomy, reforming the production of sine tables. Khwarizmi and Habash al-Hasib later produced a set of trigonometric tables.

In trigonometry, a skinny triangle is a triangle whose height is much greater than its base. The solution of such triangles can be greatly simplified by using the approximation that the sine of a small angle is equal to that angle in radians. The solution is particularly simple for skinny triangles that are also isosceles or right triangles: in these cases the need for trigonometric functions or tables can be entirely dispensed with.

References

  1. Holbrow, Charles H.; et al. (2010), Modern Introductory Physics (2nd ed.), Springer Science & Business Media, pp. 30–32, ISBN   978-0387790794.
  2. Plesha, Michael; et al. (2012), Engineering Mechanics: Statics and Dynamics (2nd ed.), McGraw-Hill Higher Education, p. 12, ISBN   978-0077570613.
  3. "Small-Angle Approximation | Brilliant Math & Science Wiki". brilliant.org. Retrieved 2020-07-22.
  4. Larson, Ron; et al. (2006), Calculus of a Single Variable: Early Transcendental Functions (4th ed.), Cengage Learning, p. 85, ISBN   0618606254.
  5. Boas, Mary L. (2006). Mathematical Methods in the Physical Sciences . Wiley. p. 26. ISBN   978-0-471-19826-0.
  6. Green, Robin M. (1985), Spherical Astronomy, Cambridge University Press, p. 19, ISBN   0521317797.
  7. "Slit Interference".