Soddy's hexlet

Last updated
Figure 1. A family of hexlets related by a rotation and scaling. The centers of the spheres fall on an ellipse, making it an elliptic hexlet. Rotating hexlet equator opt.gif
Figure 1. A family of hexlets related by a rotation and scaling. The centers of the spheres fall on an ellipse, making it an elliptic hexlet.

In geometry, Soddy's hexlet is a chain of six spheres (shown in grey in Figure 1), each of which is tangent to both of its neighbors and also to three mutually tangent given spheres. In Figure 1, the three spheres are the red inner sphere and two spheres (not shown) above and below the plane the centers of the hexlet spheres lie on. In addition, the hexlet spheres are tangent to a fourth sphere (the blue outer sphere in Figure 1), which is not tangent to the three others.

Contents

According to a theorem published by Frederick Soddy in 1937, [1] it is always possible to find a hexlet for any choice of mutually tangent spheres A, B and C. Indeed, there is an infinite family of hexlets related by rotation and scaling of the hexlet spheres (Figure 1); in this, Soddy's hexlet is the spherical analog of a Steiner chain of six circles. [2] Consistent with Steiner chains, the centers of the hexlet spheres lie in a single plane, on an ellipse. Soddy's hexlet was also discovered independently in Japan, as shown by Sangaku tablets from 1822 in Kanagawa prefecture. [3]

Definition

Soddy's hexlet is a chain of six spheres, labeled S1S6, each of which is tangent to three given spheres, A, B and C, that are themselves mutually tangent at three distinct points. (For consistency throughout the article, the hexlet spheres will always be depicted in grey, spheres A and B in green, and sphere C in blue.) The hexlet spheres are also tangent to a fourth fixed sphere D (always shown in red) that is not tangent to the three others, A, B and C.

Each sphere of Soddy's hexlet is also tangent to its neighbors in the chain; for example, sphere S4 is tangent to S3 and S5. The chain is closed, meaning that every sphere in the chain has two tangent neighbors; in particular, the initial and final spheres, S1 and S6, are tangent to one another.

Annular hexlet

Figure 2: An annular hexlet. Annular Soddy hexlet.jpg
Figure 2: An annular hexlet.

The annular Soddy's hexlet is a special case (Figure 2), in which the three mutually tangent spheres consist of a single sphere of radius r (blue) sandwiched between two parallel planes (green) separated by a perpendicular distance 2r. In this case, Soddy's hexlet consists of six spheres of radius r packed like ball bearings around the central sphere and likewise sandwiched. The hexlet spheres are also tangent to a fourth sphere (red), which is not tangent to the other three.

The chain of six spheres can be rotated about the central sphere without affecting their tangencies, showing that there is an infinite family of solutions for this case. As they are rotated, the spheres of the hexlet trace out a torus (a doughnut-shaped surface); in other words, a torus is the envelope of this family of hexlets.

Solution by inversion

The general problem of finding a hexlet for three given mutually tangent spheres A, B and C can be reduced to the annular case using inversion. This geometrical operation always transforms spheres into spheres or into planes, which may be regarded as spheres of infinite radius. A sphere is transformed into a plane if and only if the sphere passes through the center of inversion. An advantage of inversion is that it preserves tangency; if two spheres are tangent before the transformation, they remain so after. Thus, if the inversion transformation is chosen judiciously, the problem can be reduced to a simpler case, such as the annular Soddy's hexlet. Inversion is reversible; repeating an inversion in the same point returns the transformed objects to their original size and position.

Inversion in the point of tangency between spheres A and B transforms them into parallel planes, which may be denoted as a and b. Since sphere C is tangent to both A and B and does not pass through the center of inversion, C is transformed into another sphere c that is tangent to both planes; hence, c is sandwiched between the two planes a and b. This is the annular Soddy's hexlet (Figure 2). Six spheres s1s6 may be packed around c and likewise sandwiched between the bounding planes a and b. Re-inversion restores the three original spheres, and transforms s1s6 into a hexlet for the original problem. In general, these hexlet spheres S1S6 have different radii.

An infinite variety of hexlets may be generated by rotating the six balls s1s6 in their plane by an arbitrary angle before re-inverting them. The envelope produced by such rotations is the torus that surrounds the sphere c and is sandwiched between the two planes a and b; thus, the torus has an inner radius r and outer radius 3r. After the re-inversion, this torus becomes a Dupin cyclide (Figure 3).

Figure 3: A Dupin cyclide, through which the hexlet spheres rotate, always touching. The cyclide is tangent to an inner sphere, an outer sphere and two spheres above and below the "hole" in the "doughnut". Cyclide.png
Figure 3: A Dupin cyclide, through which the hexlet spheres rotate, always touching. The cyclide is tangent to an inner sphere, an outer sphere and two spheres above and below the "hole" in the "doughnut".

Dupin cyclide

The envelope of Soddy's hexlets is a Dupin cyclide, an inversion of the torus. Thus Soddy's construction shows that a cyclide of Dupin is the envelope of a 1-parameter family of spheres in two different ways, and each sphere in either family is tangent to two spheres in same family and three spheres in the other family. [4] This result was probably known to Charles Dupin, who discovered the cyclides that bear his name in his 1803 dissertation under Gaspard Monge. [5]

Relation to Steiner chains

Figure 4: Steiner chain of six circles corresponding to a Soddy's hexlet. Steiner chain animation opt.gif
Figure 4: Steiner chain of six circles corresponding to a Soddy's hexlet.

The intersection of the hexlet with the plane of its spherical centers produces a Steiner chain of six circles.

Parabolic and hyperbolic hexlets

It is assumed that spheres A and B are the same size.

In any elliptic hexlet, such as the one shown at the top of the article, there are two tangent planes to the hexlet. In order for an elliptic hexlet to exist, the radius of C must be less than one quarter that of A. If C's radius is one quarter of A's, each sphere will become a plane in the journey. The inverted image shows a normal elliptic hexlet, though, and in the parabolic hexlet, the point where a sphere turns into a plane is precisely when its inverted image passes through the centre of inversion. In such a hexlet there is only one tangent plane to the hexlet. The line of the centres of a parabolic hexlet is a parabola.

If C is even larger than that, a hyperbolic hexlet is formed, and now there are no tangent planes at all. Label the spheres S1 to S6. S1 thus cannot go very far until it becomes a plane (where its inverted image passes through the centre of inversion) and then reverses its concavity (where its inverted image surrounds the centre of inversion). Now the line of the centres is a hyperbola.

The limiting case is when A, B and C are all the same size. The hexlet now becomes straight. S1 is small as it passes through the hole between A, B and C, and grows till it becomes a plane tangent to them. The centre of inversion is now also with a point of tangency with the image of S6, so it is also a plane tangent to A, B and C. As S1 proceeds, its concavity is reversed and now it surrounds all the other spheres, tangent to A, B, C, S2 and S6. S2 pushes upwards and grows to become a tangent plane and S6 shrinks. S1 then obtains S6's former position as a tangent plane. It then reverses concavity again and passes through the hole again, beginning another round trip. Now the line of centres is a degenerate hyperbola, where it has collapsed into two straight lines. [2]

Sangaku tablets

Soddy's hexlet problem in japanese mathematics book Kokonsankan (1832). Kokonsankan 1832 hexlet problem.jpg
Soddy's hexlet problem in japanese mathematics book Kokonsankan (1832).
Replica of Sangaku at Hotoku museum in Samukawa Shrine. Sangaku of Soddy's hexlet in Samukawa Shrine.jpg
Replica of Sangaku at Hōtoku museum in Samukawa Shrine.

Japanese mathematicians discovered the same hexlet over one hundred years before Soddy did. They analysed the packing problems in which circles and polygons, balls and polyhedrons come into contact and often found the relevant theorems independently before their discovery by Western mathematicians. They often published these as sangaku. The sangaku about the hexlet was made by Irisawa Shintarō Hiroatsu in the school of Uchida Itsumi, and dedicated to the Samukawa Shrine in May 1822. The original sangaku has been lost but was recorded in Uchida's book of Kokonsankan in 1832. A replica of the sangaku was made from the record and dedicated to the Hōtoku museum in the Samukawa Shrine in August, 2009. [6]

The sangaku by Irisawa consists of three problems. The third problem relates to Soddy's hexlet: "the diameter of the outer circumscribing sphere is 30 sun. The diameters of the nucleus balls are 10 sun and 6 sun each. The diameter of one of the balls in the chain of balls is 5 sun. Then I asked for the diameters of the remaining balls. The answer is 15 sun, 10 sun, 3.75 sun, 2.5 sun and 2 + 8/11 sun." [7]

In his answer, the method for calculating the diameters of the balls is written down and, when converted into Western mathematical notation, gives the following solution. If the ratios of the diameter of the outside ball to each of the nucleus balls are a1, a2, and if the ratios of the diameter to the chain balls are c1, ..., c6. we want to represent c2, ..., c6in terms of a1, a2, and c1. If

then,

.

Then c1 + c4 = c2 + c5 = c3 + c6.

If r1, ..., r6 are the diameters of six balls, we get the formula:

See also

Notes

  1. Soddy 1937
  2. 1 2 Ogilvy 1990
  3. Rothman 1998
  4. Coxeter 1952
  5. O'Connor & Robertson 2000
  6. Yamaji & Nishida 2009 , p. 443.
  7. Amano 1992 , pp. 21–24.

Related Research Articles

<span class="mw-page-title-main">Circle</span> Simple curve of Euclidean geometry

A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius.

<span class="mw-page-title-main">Sphere</span> A set of points in space which are equidistant from the center

A sphere is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. That given point is the centre of the sphere, and r is the sphere's radius. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians.

<span class="mw-page-title-main">Curvature</span> Mathematical measure of how much a curve or surface deviates from flatness

In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane.

<span class="mw-page-title-main">Torus</span> Doughnut-shaped surface of revolution

In geometry, a torus is a surface of revolution generated by revolving a circle in three-dimensional space one full revolution about an axis that is coplanar with the circle. The main types of toruses include ring toruses, horn toruses, and spindle toruses. A ring torus is sometimes colloquially referred to as a donut or doughnut.

In geometry, inversive geometry is the study of inversion, a transformation of the Euclidean plane that maps circles or lines to other circles or lines and that preserves the angles between crossing curves. Many difficult problems in geometry become much more tractable when an inversion is applied. Inversion seems to have been discovered by a number of people contemporaneously, including Steiner (1824), Quetelet (1825), Bellavitis (1836), Stubbs and Ingram (1842-3) and Kelvin (1845).

<span class="mw-page-title-main">Ford circle</span> Rational circle tangent to the real line

In mathematics, a Ford circle is a circle in the Euclidean plane, in a family of circles that are all tangent to the -axis at rational points. For each rational number , expressed in lowest terms, there is a Ford circle whose center is at the point and whose radius is . It is tangent to the -axis at its bottom point, . The two Ford circles for rational numbers and are tangent circles when and otherwise these two circles are disjoint.

<span class="mw-page-title-main">Descartes' theorem</span> Equation for radii of tangent circles

In geometry, Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation. By solving this equation, one can construct a fourth circle tangent to three given, mutually tangent circles. The theorem is named after René Descartes, who stated it in 1643.

<span class="mw-page-title-main">Dupin cyclide</span> Geometric inversion of a torus, cylinder or double cone

In mathematics, a Dupin cyclide or cyclide of Dupin is any geometric inversion of a standard torus, cylinder or double cone. In particular, these latter are themselves examples of Dupin cyclides. They were discovered c. 1802 by Charles Dupin, while he was still a student at the École polytechnique following Gaspard Monge's lectures. The key property of a Dupin cyclide is that it is a channel surface in two different ways. This property means that Dupin cyclides are natural objects in Lie sphere geometry.

<span class="mw-page-title-main">Sangaku</span> Wooden tablets inscribed with geometrical theorems in Edo Japan

Sangaku or san gaku are Japanese geometrical problems or theorems on wooden tablets which were placed as offerings at Shinto shrines or Buddhist temples during the Edo period by members of all social classes.

<span class="mw-page-title-main">Ultraparallel theorem</span> Theorem in hyperbolic geometry

In hyperbolic geometry, two lines are said to be ultraparallel if they do not intersect and are not limiting parallel.

<span class="mw-page-title-main">Problem of Apollonius</span> Construct circles that are tangent to three given circles in a plane

In Euclidean plane geometry, Apollonius's problem is to construct circles that are tangent to three given circles in a plane (Figure 1). Apollonius of Perga posed and solved this famous problem in his work Ἐπαφαί ; this work has been lost, but a 4th-century AD report of his results by Pappus of Alexandria has survived. Three given circles generically have eight different circles that are tangent to them (Figure 2), a pair of solutions for each way to divide the three given circles in two subsets.

<span class="mw-page-title-main">Clifford torus</span> Geometrical object in four-dimensional space

In geometric topology, the Clifford torus is the simplest and most symmetric flat embedding of the Cartesian product of two circles S1
a
and S1
b
. It is named after William Kingdon Clifford. It resides in R4, as opposed to in R3. To see why R4 is necessary, note that if S1
a
and S1
b
each exists in its own independent embedding space R2
a
and R2
b
, the resulting product space will be R4 rather than R3. The historically popular view that the Cartesian product of two circles is an R3 torus in contrast requires the highly asymmetric application of a rotation operator to the second circle, since that circle will only have one independent axis z available to it after the first circle consumes x and y.

<span class="mw-page-title-main">Focal surface</span>

For a surface in three dimension the focal surface, surface of centers or evolute is formed by taking the centers of the curvature spheres, which are the tangential spheres whose radii are the reciprocals of one of the principal curvatures at the point of tangency. Equivalently it is the surface formed by the centers of the circles which osculate the curvature lines.

<span class="mw-page-title-main">Channel surface</span> Surface formed from spheres centered along a curve

In geometry and topology, a channel or canal surface is a surface formed as the envelope of a family of spheres whose centers lie on a space curve, its directrix. If the radii of the generating spheres are constant, the canal surface is called a pipe surface. Simple examples are:

<span class="mw-page-title-main">Lie sphere geometry</span> Geometry founded on spheres

Lie sphere geometry is a geometrical theory of planar or spatial geometry in which the fundamental concept is the circle or sphere. It was introduced by Sophus Lie in the nineteenth century. The main idea which leads to Lie sphere geometry is that lines should be regarded as circles of infinite radius and that points in the plane should be regarded as circles of zero radius.

<span class="mw-page-title-main">Pappus chain</span> Ring of circles between two tangent circles

In geometry, the Pappus chain is a ring of circles between two tangent circles investigated by Pappus of Alexandria in the 3rd century AD.

<span class="mw-page-title-main">Archimedean circle</span>

In geometry, an Archimedean circle is any circle constructed from an arbelos that has the same radius as each of Archimedes' twin circles. If the arbelos is normed such that the diameter of its outer (largest) half circle has a length of 1 and r denotes the radiius of any of the inner half circles, then the radius ρ of such an Archimedean circle is given by

<span class="mw-page-title-main">Steiner chain</span> Set of circles related by tangency

In geometry, a Steiner chain is a set of n circles, all of which are tangent to two given non-intersecting circles, where n is finite and each circle in the chain is tangent to the previous and next circles in the chain. In the usual closed Steiner chains, the first and last circles are also tangent to each other; by contrast, in open Steiner chains, they need not be. The given circles α and β do not intersect, but otherwise are unconstrained; the smaller circle may lie completely inside or outside of the larger circle. In these cases, the centers of Steiner-chain circles lie on an ellipse or a hyperbola, respectively.

<span class="mw-page-title-main">Dupin's theorem</span>

In differential geometry Dupin's theorem, named after the French mathematician Charles Dupin, is the statement:

A Treatise on the Circle and the Sphere is a mathematics book on circles, spheres, and inversive geometry. It was written by Julian Coolidge, and published by the Clarendon Press in 1916. The Chelsea Publishing Company published a corrected reprint in 1971, and after the American Mathematical Society acquired Chelsea Publishing it was reprinted again in 1997.

References