Solar controller

Last updated

A solar controller is an electronic device that controls the circulating pump in a solar hot water system to harvest as much heat as possible from the solar panels and protect the system from overheating. The basic job of the controller is to turn the circulating pump on when there is heat available in the panels, moving the working fluid through the panels to the heat exchanger at the thermal store. Heat is available whenever the temperature of the solar panel is greater than the temperature of the water in the heat exchanger. Overheat protection is achieved by turning the pump off when the store reaches its maximum temperature and sometimes cooling the store by turning the pump on when the store is hotter than the panels.

Contents

Most commercial controllers display the temperature of the hot water in the store and provide general status information about the system, including overall energy production.

Components

The simplest solar controller circuit uses a comparator with two temperature inputs, one at the solar panel and one at the thermal store's heat exchanger, and an output to control the pump. Commercial controllers use a microprocessor usually with a LCD display and simple user interface with a few pushbuttons. Power for the controller and the pump can come from a mains electric supply or from a photovoltaic (PV) module.[ citation needed ]

Function

The controller's main function is to switch the circulating pump on or off. The pump is usually switched on when the solar panel is hotter than the water in the store's heat exchanger and off when the panel is colder. Switching the pump on transfers the heat in the panel to the store. Switching it off when the panels cool prevents a reversal of the process and loss of heat from the store. The controller measures and compares the temperatures in the panel and the heat exchanger every few seconds.

Commercial controllers do not turn on the pump until the difference in temperature between the panels and the water in the heat exchanger is sufficient to provide significantly more energy than is consumed by the pump. This temperature difference is called the on differential (usually 4–15 °C. They turn off the pump when the panels no longer are hot enough to provide significant heat to the store (the off differential). The wider the difference between these differentials, the fewer pump on-off cycles will take place. These factors are usually set by the solar installer in relation to the particular installation, especially dependent on the efficiency of the heat exhchanger and production capacity of the panels.

Controllers provide an overrun time to extract some of the heat energy left in interconnecting pipes after the panels cool off. They may also implement certain safety features such as cooling the store when it exceeds a preset temperature such as 65 °C, by sending excess heat back to the panels to be given off to the environment.

Photovoltaic powered solar controller

A photovoltaic (PV) powered solar controller uses solar electricity produced on-site to run the pump that delivers the solar-heated transfer fluid to the hot water store.

One claimed advantage of PV power is that it reduces the overall carbon emissions associated with operating the system since it avoids the need to supply this energy from fossil sources.[ citation needed ] However, the energy required to operate the system is very small in comparison to the energy produced by the system and the carbon emissions reduction of adding PV power fractional.[ citation needed ]

The most practical benefit of a PV powered controller is the resultant simplicity of the overall system. Rather than using complex algorithms based on store and panel temperatures, the pump is driven directly by the PV panel: when the sun shines, the pump runs. In practice this is nearly (90-99%) as efficient a practical control algorithm as most others achieve and has obvious advantages for reduced system complexity.[ original research? ]

A disadvantage to the PV powered approach is that the pump stops immediately after the sun is occluded. With vacuum tube and heat pipe solar panels, these can have an appreciable amount of energy stored in each tube at the moment the sun goes in. To avoid overheating the tubes it is necessary to either pump the circuit for a short time after the sun, or else to provide a large reservoir of fluid in the header above the tubes. Neither of these options is really compatible with the simple direct-PV pump approach and so such systems are limited to using the less efficient flat panel collectors.[ citation needed ]

A PV powered controller may contain a small electricity store to allow the controller to remain powered and display temperatures at night when there is no sunlight. This electricity store is usually in the form of supercapacitors, since these have a much longer life than batteries.[ citation needed ]

The benefits of a PV powered solar controller comes at a cost in reduced system performance in the range of 1-10%. [1] This is due to heat losses at times when the panel may be hotter than the water store but there is insufficient sunlight to power the pump. This happens mainly on hot days when hot water is likely to be in excess so the potential reduction is less significant than it would be at times when the store was cooler.[ original research? ]

Related Research Articles

<span class="mw-page-title-main">Solar energy</span> Radiant light and heat from the Sun, harnessed with technology

Solar energy is radiant light and heat from the Sun that is harnessed using a range of technologies such as solar power to generate electricity, solar thermal energy, and solar architecture. It is an essential source of renewable energy, and its technologies are broadly characterized as either passive solar or active solar depending on how they capture and distribute solar energy or convert it into solar power. Active solar techniques include the use of photovoltaic systems, concentrated solar power, and solar water heating to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light-dispersing properties, and designing spaces that naturally circulate air.

<span class="mw-page-title-main">Heat pump</span> System that transfers heat from one space to another

A heat pump is a device that uses work to transfer heat from a cool space to a warm space by transferring thermal energy using a refrigeration cycle, cooling the cool space and warming the warm space. In cold weather a heat pump can move heat from the cool outdoors to warm a house; the pump may also be designed to move heat from the house to the warmer outdoors in warm weather. As they transfer heat rather than generating heat, they are more energy-efficient than other ways of heating or cooling a home.

<span class="mw-page-title-main">Thermostat</span> Component which maintains a setpoint temperature

A thermostat is a regulating device component which senses the temperature of a physical system and performs actions so that the system's temperature is maintained near a desired setpoint.

<span class="mw-page-title-main">Solar thermal energy</span> Technology using sunlight for heat

Solar thermal energy (STE) is a form of energy and a technology for harnessing solar energy to generate thermal energy for use in industry, and in the residential and commercial sectors.

<span class="mw-page-title-main">Water heating</span> Thermodynamic process that uses energy sources to heat water

Water heating is a heat transfer process that uses an energy source to heat water above its initial temperature. Typical domestic uses of hot water include cooking, cleaning, bathing, and space heating. In industry, hot water and water heated to steam have many uses.

<span class="mw-page-title-main">Solar water heating</span> Use of sunlight for water heating with a solar thermal collector

Solar water heating (SWH) is heating water by sunlight, using a solar thermal collector. A variety of configurations are available at varying cost to provide solutions in different climates and latitudes. SWHs are widely used for residential and some industrial applications.

<span class="mw-page-title-main">Solar thermal collector</span> Device that collects heat

A solar thermal collector collects heat by absorbing sunlight. The term "solar collector" commonly refers to a device for solar hot water heating, but may refer to large power generating installations such as solar parabolic troughs and solar towers or non water heating devices such as solar cooker, solar air heaters.

<span class="mw-page-title-main">Chiller</span> Machine that removes heat from a liquid coolant via vapor compression

A chiller is a machine that removes heat from a liquid coolant via a vapor-compression, adsorption refrigeration, or absorption refrigeration cycles. This liquid can then be circulated through a heat exchanger to cool equipment, or another process stream. As a necessary by-product, refrigeration creates waste heat that must be exhausted to ambience, or for greater efficiency, recovered for heating purposes. Vapor compression chillers may use any of a number of different types of compressors. Most common today are the hermetic scroll, semi-hermetic screw, or centrifugal compressors. The condensing side of the chiller can be either air or water cooled. Even when liquid cooled, the chiller is often cooled by an induced or forced draft cooling tower. Absorption and adsorption chillers require a heat source to function.

<span class="mw-page-title-main">Thermal energy storage</span> Technologies to store thermal energy

Thermal energy storage (TES) is achieved with widely different technologies. Depending on the specific technology, it allows excess thermal energy to be stored and used hours, days, months later, at scales ranging from the individual process, building, multiuser-building, district, town, or region. Usage examples are the balancing of energy demand between daytime and nighttime, storing summer heat for winter heating, or winter cold for summer air conditioning. Storage media include water or ice-slush tanks, masses of native earth or bedrock accessed with heat exchangers by means of boreholes, deep aquifers contained between impermeable strata; shallow, lined pits filled with gravel and water and insulated at the top, as well as eutectic solutions and phase-change materials.

<span class="mw-page-title-main">Solar-powered pump</span> Pump that uses solar energy

Solar-powered pumps run on electricity generated by photovoltaic (PV) panels or the radiated thermal energy available from collected sunlight as opposed to grid electricity- or diesel-run water pumps. Generally, solar-powered pumps consist of a solar panel array, solar charge controller, DC water pump, fuse box/breakers, electrical wiring, and a water storage tank. The operation of solar-powered pumps is more economical mainly due to the lower operation and maintenance costs and has less environmental impact than pumps powered by an internal combustion engine. Solar pumps are useful where grid electricity is unavailable or impractical, and alternative sources do not provide sufficient energy.

Renewable heat is an application of renewable energy referring to the generation of heat from renewable sources; for example, feeding radiators with water warmed by focused solar radiation rather than by a fossil fuel boiler. Renewable heat technologies include renewable biofuels, solar heating, geothermal heating, heat pumps and heat exchangers. Insulation is almost always an important factor in how renewable heating is implemented.

Solar air conditioning, or "solar-powered air conditioning", refers to any air conditioning (cooling) system that uses solar power.

<span class="mw-page-title-main">Photovoltaic thermal hybrid solar collector</span>

Photovoltaic thermal collectors, typically abbreviated as PVT collectors and also known as hybrid solar collectors, photovoltaic thermal solar collectors, PV/T collectors or solar cogeneration systems, are power generation technologies that convert solar radiation into usable thermal and electrical energy. PVT collectors combine photovoltaic solar cells, which convert sunlight into electricity, with a solar thermal collector, which transfers the otherwise unused waste heat from the PV module to a heat transfer fluid. By combining electricity and heat generation within the same component, these technologies can reach a higher overall efficiency than solar photovoltaic (PV) or solar thermal (T) alone.

HVAC is a major sub discipline of mechanical engineering. The goal of HVAC design is to balance indoor environmental comfort with other factors such as installation cost, ease of maintenance, and energy efficiency. The discipline of HVAC includes a large number of specialized terms and acronyms, many of which are summarized in this glossary.

<span class="mw-page-title-main">Hydronic balancing</span>

Hydronic balancing, also called hydraulic balancing, is the process of optimizing the distribution of water in a building's hydronic heating or cooling system by equalizing the system pressure to provide the intended indoor climate at optimum energy efficiency and minimal operating cost.

<span class="mw-page-title-main">Ice storage air conditioning</span>

Ice storage air conditioning is the process of using ice for thermal energy storage. The process can reduce energy used for cooling during times of peak electrical demand. Alternative power sources such as solar can also use the technology to store energy for later use. This is practical because of water's large heat of fusion: one metric ton of water can store 334 megajoules (MJ) of energy, equivalent to 93 kWh.

The following outline is provided as an overview of and topical guide to solar energy:

<span class="mw-page-title-main">Storage water heater</span> Thermodynamic device that uses energy to raise the temperature of water

A storage water heater, or a hot water system (HWS), is a domestic water heating appliance that uses a hot water storage tank to maximize water heating capacity and provide instantaneous delivery of hot water. Conventional storage water heaters use a variety of fuels, including natural gas, propane, fuel oil, and electricity. Less conventional water heating technologies, such as heat pump water heaters and solar water heaters, can also be categorized as storage water heaters.

The Glossary of Geothermal Heating and Cooling provides definitions of many terms used within the Geothermal heat pump industry. The terms in this glossary may be used by industry professionals, for education materials, and by the general public.

<span class="mw-page-title-main">Solar-assisted heat pump</span>

A solar-assisted heat pump (SAHP) is a machine that combines a heat pump and thermal solar panels and/or PV solar panels in a single integrated system. Typically these two technologies are used separately to produce hot water. In this system the solar thermal panel performs the function of the low temperature heat source and the heat produced is used to feed the heat pump's evaporator. The goal of this system is to get high COP and then produce energy in a more efficient and less expensive way.

References

  1. Martin C; Watson M (2001). "Side-by-side Testing of Eight Solar Water Heating Systems" (PDF). United Kingdom Department of Trade and Industry. Archived from the original (PDF) on June 30, 2007. Retrieved 2007-08-04.{{cite journal}}: Cite journal requires |journal= (help)

Further reading