Solid-state dye laser

Last updated

Organic solid-state narrow-linewidth tunable dye laser oscillator Duarte's multiple-prism grating laser oscillator.png
Organic solid-state narrow-linewidth tunable dye laser oscillator

A solid-state dye laser (SSDL) is a solid-state lasers in which the gain medium is a laser dye-doped organic matrix such as poly(methyl methacrylate) (PMMA), rather than a liquid solution of the dye. These lasers are also referred to as solid-state organic lasers and solid-state dye-doped polymer lasers.

Contents

SSDLs were introduced in 1967 by Soffer and McFarland. [2]

Organic gain media

In the 1990s, new forms of improved PMMA, such as modified PMMA, with high optical quality characteristics were introduced. [3] Gain media research for SSDL has been rather active in the 21st century, and various new dye-doped solid-state organic matrices have been discovered. [4] Notable among these new gain media are organic-inorganic dye-doped polymer-nanoparticle composites. [5] [6] [7] An additional form of organic-inorganic dye-doped solid-state laser gain media are the ORMOSILs. [7] [8]

High performance solid-state dye laser oscillators

This improved gain medium was central to the demonstration of the first tunable narrow-linewidth solid-state dye laser oscillators, by Duarte, [8] which were later optimized to deliver pulse emission in the kW regime in nearly diffraction limited beams with single-longitudinal-mode laser linewidths of ≈ 350 MHz (or ≈ 0.0004 nm, at a laser wavelength of 590 nm). [9] These tunable laser oscillators use multiple-prism grating architectures [9] yielding very high intracavity dispersions that can be nicely quantified using the multiple-prism grating equations. [10]

Distributed feedback and waveguide solid-state dye lasers

Additional developments in solid-state dye lasers were demonstrated with the introduction of distributed feedback laser designs in 1999 [11] [12] and distributed feedback waveguides in 2002. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Dye laser</span> Equipment using an organic dye to emit coherent light

A dye laser is a laser that uses an organic dye as the lasing medium, usually as a liquid solution. Compared to gases and most solid state lasing media, a dye can usually be used for a much wider range of wavelengths, often spanning 50 to 100 nanometers or more. The wide bandwidth makes them particularly suitable for tunable lasers and pulsed lasers. The dye rhodamine 6G, for example, can be tuned from 635 nm (orangish-red) to 560 nm (greenish-yellow), and produce pulses as short as 16 femtoseconds. Moreover, the dye can be replaced by another type in order to generate an even broader range of wavelengths with the same laser, from the near-infrared to the near-ultraviolet, although this usually requires replacing other optical components in the laser as well, such as dielectric mirrors or pump lasers.

<span class="mw-page-title-main">Ti-sapphire laser</span>

Ti:sapphire lasers (also known as Ti:Al2O3 lasers, titanium-sapphire lasers, or Ti:sapphs) are tunable lasers which emit red and near-infrared light in the range from 650 to 1100 nanometers. These lasers are mainly used in scientific research because of their tunability and their ability to generate ultrashort pulses. Lasers based on Ti:sapphire were first constructed and invented in June 1982 by Peter Moulton at the MIT Lincoln Laboratory.

<span class="mw-page-title-main">Laser guide star</span> Artificial star image used by telescopes

A laser guide star is an artificial star image created for use in astronomical adaptive optics systems, which are employed in large telescopes in order to correct atmospheric distortion of light. Adaptive optics (AO) systems require a wavefront reference source of light called a guide star. Natural stars can serve as point sources for this purpose, but sufficiently bright stars are not available in all parts of the sky, which greatly limits the usefulness of natural guide star adaptive optics. Instead, one can create an artificial guide star by shining a laser into the atmosphere. Light from the beam is reflected by components in the upper atmosphere back into the telescope. This star can be positioned anywhere the telescope desires to point, opening up much greater amounts of the sky to adaptive optics.

<span class="mw-page-title-main">Tunable laser</span>

A tunable laser is a laser whose wavelength of operation can be altered in a controlled manner. While all laser gain media allow small shifts in output wavelength, only a few types of lasers allow continuous tuning over a significant wavelength range.

<span class="mw-page-title-main">Theodor W. Hänsch</span> German physicist and nobel laureate

Theodor Wolfgang Hänsch is a German physicist. He received one-third of the 2005 Nobel Prize in Physics for "contributions to the development of laser-based precision spectroscopy, including the optical frequency comb technique", sharing the prize with John L. Hall and Roy J. Glauber.

<span class="mw-page-title-main">Solid-state laser</span> Laser which uses a solid gain medium

A solid-state laser is a laser that uses a gain medium that is a solid, rather than a liquid as in dye lasers or a gas as in gas lasers. Semiconductor-based lasers are also in the solid state, but are generally considered as a separate class from solid-state lasers, called laser diodes.

Amplified spontaneous emission (ASE) or superluminescence is light, produced by spontaneous emission, that has been optically amplified by the process of stimulated emission in a gain medium. It is inherent in the field of random lasers.

A fiber laser is a laser in which the active gain medium is an optical fiber doped with rare-earth elements such as erbium, ytterbium, neodymium, dysprosium, praseodymium, thulium and holmium. They are related to doped fiber amplifiers, which provide light amplification without lasing. Fiber nonlinearities, such as stimulated Raman scattering or four-wave mixing can also provide gain and thus serve as gain media for a fiber laser.

Ormosil is a shorthand phrase for organically modified silica or organically modified silicate. In general, ormosils are produced by adding silane to silica-derived gel during the sol-gel process. They are engineered materials that show great promise in a wide range of applications such as:

<span class="mw-page-title-main">F. J. Duarte</span>

Francisco Javier "Frank" Duarte is a laser physicist and author/editor of several books on tunable lasers.

Beam expanders are optical devices that take a collimated beam of light and expand its size.

<span class="mw-page-title-main">Multiple-prism dispersion theory</span> Theory in optics

The first description of multiple-prism arrays, and multiple-prism dispersion, was given by Newton in his book Opticks. Prism pair expanders were introduced by Brewster in 1813. A modern mathematical description of the single-prism dispersion was given by Born and Wolf in 1959. The generalized multiple-prism dispersion theory was introduced by Duarte and Piper in 1982.

Fritz Peter Schäfer was a German physicist, born in Hersfeld, Hesse-Nassau. He is the co-inventor of the organic dye laser. His book, Dye Lasers, is considered a classic in the field of tunable lasers. In this book the chapter written by Schäfer gives an ample and insightful exposition on organic laser dye molecules in addition to a description on the physics of telescopic, and multiple-prism, tunable narrow-linewidth laser oscillators.

Quantum mechanics was first applied to optics, and interference in particular, by Paul Dirac. Richard Feynman, in his Lectures on Physics, uses Dirac's notation to describe thought experiments on double-slit interference of electrons. Feynman's approach was extended to N-slit interferometers for either single-photon illumination, or narrow-linewidth laser illumination, that is, illumination by indistinguishable photons, by Frank Duarte. The N-slit interferometer was first applied in the generation and measurement of complex interference patterns.

<span class="mw-page-title-main">Multiple-prism grating laser oscillator</span>

Multiple-prism grating laser oscillators, or MPG laser oscillators, use multiple-prism beam expansion to illuminate a diffraction grating mounted either in Littrow configuration or grazing-incidence configuration. Originally, these narrow-linewidth tunable dispersive oscillators were introduced as multiple-prism Littrow (MPL) grating oscillators, or hybrid multiple-prism near-grazing-incidence (HMPGI) grating cavities, in organic dye lasers. However, these designs were quickly adopted for other types of lasers such as gas lasers, diode lasers, and more recently fiber lasers.

Laser linewidth is the spectral linewidth of a laser beam.

A liquid-crystal laser is a laser that uses a liquid crystal as the resonator cavity, allowing selection of emission wavelength and polarization from the active laser medium. The lasing medium is usually a dye doped into the liquid crystal. Liquid-crystal lasers are comparable in size to diode lasers, but provide the continuous wide spectrum tunability of dye lasers while maintaining a large coherence area. The tuning range is typically several tens of nanometers. Self-organization at micrometer scales reduces manufacturing complexity compared to using layered photonic metamaterials. Operation may be either in continuous wave mode or in pulsed mode.

James A. (Jim) Piper is a New Zealand/Australian physicist, Deputy Vice-Chancellor (Research) and Professor of Physics at Macquarie University.

<span class="mw-page-title-main">Organic laser</span> Laser that uses a carbon-based material as the gain medium

An organic laser is a laser which uses an organic material as the gain medium. The first organic laser was the liquid dye laser. These lasers use laser dye solutions as their gain media.

<span class="mw-page-title-main">Organic photonics</span>

Organic photonics includes the generation, emission, transmission, modulation, signal processing, switching, amplification, and detection/sensing of light, using organic optical materials.

References

  1. Duarte, F. J.; Taylor, T. S.; Costela, A.; Garcia-Moreno, I.; Sastre, R. (1998). "Long-pulse narrow-linewidth dispersive solid-state dye laser oscillator". Applied Optics. 37 (18): 3987–3989. Bibcode:1998ApOpt..37.3987D. doi:10.1364/AO.37.003987. PMID   18273368.
  2. Soffer, B. H.; McFarland, B. B. (1967). "Continuously Tunable, Narrow-Band Organic Dye Lasers". Applied Physics Letters. 10 (10): 266. Bibcode:1967ApPhL..10..266S. doi:10.1063/1.1754804.
  3. Maslyukov, A.; Sokolov, S.; Kaivola, M.; Nyholm, K.; Popov, S. (1995). "Solid-state dye laser with modified poly(methyl methacrylate)-doped active elements". Applied Optics. 34 (9): 1516–1518. Bibcode:1995ApOpt..34.1516M. doi:10.1364/AO.34.001516. PMID   21037689.
  4. A. J. C. Kuehne and M. C. Gather, Organic Lasers: Recent Developments on Materials, Device Geometries, and Fabrication Techniques, Chem. Rev.116, 12823-12864 (2016).
  5. Duarte, F. J.; James, R. O. (2003). "Tunable solid-state lasers incorporating dye-doped polymer-nanoparticle gain media". Optics Letters. 28 (21): 2088–90. Bibcode:2003OptL...28.2088D. doi:10.1364/OL.28.002088. PMID   14587824.
  6. Costela, A.; Garcia-Moreno, I.; Sastre, R. (2009). "Solid state dye lasers". In Duarte, F. J. (ed.). Tunable Laser Applications (2nd ed.). Boca Raton: CRC Press. pp.  97–120. ISBN   978-1-4200-6009-6.
  7. 1 2 Duarte, F. J.; James, R. O. (2009). "Tunable lasers based on dye-doped polymer gain media incorporating homogeneous distributions of functional nanoparticles". In Duarte, F. J. (ed.). Tunable Laser Applications (2nd ed.). Boca Raton: CRC Press. pp.  121–142. ISBN   978-1-4200-6009-6.
  8. 1 2 Duarte, F. J., F. J. (1994). "Solid-state multiple-prism grating dye-laser oscillators". Applied Optics. 33 (18): 3857–3860. Bibcode:1994ApOpt..33.3857D. doi:10.1364/AO.33.003857. PMID   20935726.
  9. 1 2 Duarte, F. J. (1999). "Multiple-prism grating solid-state dye laser oscillator: optimized architecture". Applied Optics. 38 (30): 6347–6349. Bibcode:1999ApOpt..38.6347D. doi:10.1364/AO.38.006347. PMID   18324163.
  10. Duarte, F. J. (2015). "The physics of multiple-prism optics". Tunable Laser Optics (2nd ed.). New York: CRC Press. pp.  77–100. ISBN   978-1-4822-4529-5.
  11. Wadsworth, W. J.; McKinnie, I. T.; Woolhouse, A. D.; Haskell, T. G. (1999). "Efficient distributed feedback solid state dye laser with a dynamic grating". Applied Physics B. 69 (2): 163–169. Bibcode:1999ApPhB..69..163W. doi:10.1007/s003400050791. S2CID   122330477.
  12. Zhu, X-L; Lam, S-K; Lo, D. (2000). "Distributed-feedback dye-doped solgel silica lasers". Applied Optics. 39 (18): 3104–3107. Bibcode:2000ApOpt..39.3104Z. doi:10.1364/AO.39.003104. PMID   18345240.
  13. Oki, Y.; Miyamoto, S.; Tanaka, M.; Zuo, D.; Maeda, M. (2002). "Long lifetime and high repetition rate operation from distributed feedback plastic waveguided dye lasers". Optics Communications. 214 (1–6): 277–283. Bibcode:2002OptCo.214..277O. doi:10.1016/S0030-4018(02)02125-9.