Southern Delta Aquariids

Last updated
Southern Delta Aquariids (SDA)
Parent body 96P/Machholz [1]
Radiant
Constellation Aquarius
Right ascension 23h 20m
Declination −16°
Properties
Occurs duringJuly 12 – August 23
Date of peakJuly 30
Zenithal hourly rate 16 [1]
See also: List of meteor showers

The Southern Delta Aquariids [2] are a meteor shower visible from mid July to mid August each year with peak activity on 28 or 29 July. The comet of origin is not known with certainty. A suspected candidate is Comet 96P Machholz. Earlier, it was thought to have originated from the Marsden and Kracht Sungrazing comets. [1]

Contents

The Delta Aquariids get their name because their radiant appears to lie in the constellation Aquarius, near one of the constellation's brightest stars, Delta Aquarii. The name derives from the Latin possessive form "Aquarii", whereby the declension "-i" is replaced by "-ids" (hence Aquariids with two i's). There are two branches of the Delta Aquariid meteor shower, Southern and Northern. The Southern Delta Aquariids are considered a strong shower, with an average meteor observation rate of 15–20 per hour, and a peak zenithal hourly rate of 18. The average radiant is at RA=339°, DEC=−17°. The Northern Delta Aquariids are a weaker shower, peaking later in mid August, with an average peak rate of 10 meteors per hour and an average radiant of RA=340°, DEC=−2°.

History

Observations of the (then unidentified) Delta Aquariids (δ Aquariids) were recorded by G. L. Tupman in 1870, who plotted 65 meteors observed between July 27 and August 6. He plotted the radiant's apparent beginning and ending points (RA=340°, DEC=−14°; RA=333°, DEC=−16°). This was corrected later. Ronald A. McIntosh re-plotted the path, based on a greater number of observations made from 1926 to 1933. He determined it to begin at RA=334.9°, DEC=−19.2° and end RA=352.4°, DEC=−11.8°. Cuno Hoffmeister and a team of German observers were the first to record the characteristics of a Northern Aquariid radiant within the stream around 1938. Canadian D. W. R. McKinley observed both branches in 1949, but did not associate the two radiants. [3] That was accomplished by astronomer Mary Almond, in 1952, who determined both the accurate velocity and orbit of the δ Aquariids. She used a "more selective beamed aerial" (echo radio) to identify probable member meteors and plotted an accurate orbital plane. Her paper reported it as a broad "system of orbits" that are probably "connected and produced by one extended stream." [4] This was confirmed in the 1952–1954 Harvard Meteor Project, via photographic observation of orbits. The Project also produced the first evidence that the stream's evolution was influenced by Jupiter. [3]

Viewing

The Delta Aquariids are best viewed in the pre-dawn hours, away from the glow of city lights. Southern Hemisphere viewers usually get a better show because the radiant is higher in the sky during the peak season. Since the radiant is above the southern horizon for Northern Hemisphere viewers, meteors will primarily fan out in all compass points, east, north and west. Few meteors will be seen heading southward, unless they are fairly short and near the radiant.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Aquarius (constellation)</span> Zodiac constellation straddling the celestial equator

Aquarius is an equatorial constellation of the zodiac, between Capricornus and Pisces. Its name is Latin for "water-carrier" or "cup-carrier", and its old astronomical symbol is (♒︎), a representation of water. Aquarius is one of the oldest of the recognized constellations along the zodiac. It was one of the 48 constellations listed by the 2nd century astronomer Ptolemy, and it remains one of the 88 modern constellations. It is found in a region often called the Sea due to its profusion of constellations with watery associations such as Cetus the whale, Pisces the fish, and Eridanus the river.

<span class="mw-page-title-main">Boötes</span> Constellation in the northern celestial hemisphere

Boötes is a constellation in the northern sky, located between 0° and +60° declination, and 13 and 16 hours of right ascension on the celestial sphere. The name comes from Latin: Boōtēs, which comes from Greek: Βοώτης, translit. Boṓtēs 'herdsman' or 'plowman'.

<span class="mw-page-title-main">Geminids</span> Meteor shower

The Geminids are a prolific meteor shower caused by the object 3200 Phaethon, which is thought to be a Palladian asteroid with a "rock comet" orbit. This would make the Geminids, together with the Quadrantids, the only major meteor showers not originating from a comet. The meteors from this shower are slow moving, can be seen in December and usually peak around December 4–16, with the date of highest intensity being the morning of December 14. Recent showers have seen 120–160 meteors per hour under optimal conditions, generally around 02:00 to 03:00 local time. Geminids were first observed in 1862, much more recently than other showers such as the Perseids and Leonids.

<span class="mw-page-title-main">Meteor shower</span> Celestial event caused by streams of meteoroids entering Earths atmosphere

A meteor shower is a celestial event in which a number of meteors are observed to radiate, or originate, from one point in the night sky. These meteors are caused by streams of cosmic debris called meteoroids entering Earth's atmosphere at extremely high speeds on parallel trajectories. Most meteors are smaller than a grain of sand, so almost all of them disintegrate and never hit the Earth's surface. Very intense or unusual meteor showers are known as meteor outbursts and meteor storms, which produce at least 1,000 meteors an hour, most notably from the Leonids. The Meteor Data Centre lists over 900 suspected meteor showers of which about 100 are well established. Several organizations point to viewing opportunities on the Internet. NASA maintains a daily map of active meteor showers.

<span class="mw-page-title-main">Perseids</span> Prolific meteor shower associated with the comet Swift-Tuttle

The Perseids are a prolific meteor shower associated with the comet Swift–Tuttle that are usually visible from mid-July to late-August. The meteors are called the Perseids because they appear from the general direction of the constellation Perseus and in more modern times have a radiant bordering on Cassiopeia and Camelopardalis.

The Quadrantids (QUA) are a meteor shower that peaks in early January and whose radiant lies in the constellation Boötes. The zenithal hourly rate (ZHR) of this shower can be as high as that of two other reliably rich meteor showers, the Perseids in August and the Geminids in December, yet Quadrantid meteors are not seen as often as those of the two other showers because the time frame of the peak is exceedingly narrow, sometimes lasting only hours. Moreover, the meteors are quite faint, with mean apparent magnitudes between 3.0 and 6.0.

<span class="mw-page-title-main">Pi Puppids</span> Meteor shower associated with the comet 26P/Grigg-Skjellerup

The pi Puppids are a meteor shower associated with the comet 26P/Grigg-Skjellerup. The meteoroid streams approach the Sun at around 37 km/s and have to overtake Earth that is orbiting the Sun at 30 km/s, resulting in atmospheric entry at a relatively slow 15 km/s.

<span class="mw-page-title-main">Ursids</span> Meteor shower

The Ursid (URS) meteor activity begins annually around December 17 and runs for over a week, until the 25th or 26th. This meteor shower is named for its radiant point, which is located near the star Beta Ursae Minoris (Kochab) in the constellation Ursa Minor.

<span class="mw-page-title-main">Eta Aquariids</span> Meteor shower

The Eta Aquariids are a meteor shower associated with Halley's Comet. The shower is visible from about April 19 to about May 28 each year with peak activity on or around May 5. Unlike most major annual meteor showers, there is no sharp peak for this shower, but rather a broad maximum with good rates that last approximately one week centered on May 5. The meteors we currently see as members of the Eta Aquariid shower separated from Halley's Comet hundreds of years ago. The current orbit of Halley's Comet does not pass close enough to the Earth to be a source of meteoric activity.

The Taurids are an annual meteor shower, associated with the comet Encke. The Taurids are actually two separate showers, with a Southern and a Northern component. The Southern Taurids originated from Comet Encke, while the Northern Taurids originated from the asteroid 2004 TG10, possibly a large fragment of Encke due to its similar orbital parameters. They are named after their radiant point in the constellation Taurus, where they are seen to come from in the sky. Because of their occurrence in late October and early November, they are also called Halloween fireballs. Since 2P/Encke is such a short period comet, the meteors have the slowest impact speed of the annual well-known meteor showers.

<span class="mw-page-title-main">Phoenicids</span>

The Phoenicids are a minor meteor shower, first noticed by observers in New Zealand, Australia, the Indian Ocean, and South Africa during an outburst of approximately 100 meteors an hour that occurred during December 1956. Like other meteor showers, the Phoenicids get their name from the location of their radiant, which is in the constellation Phoenix. They are active from 29 November to 9 December, with a peak occurring around 5/6 December each year, and are best seen from the Southern Hemisphere.

<span class="mw-page-title-main">Orionids</span> Meteor shower

The Orionids meteor shower, often shortened to the Orionids, is one of two meteor showers associated with Halley's Comet. The Orionids are so-called because the point they appear to come from, called the radiant, lies in the constellation Orion, but they can be seen over a large area of the sky. The Orionids are an annual meteor shower which last approximately one week in late October. In some years, meteors may occur at rates of 50–70 per hour.

<span class="mw-page-title-main">Lyrids</span> Meteor shower that occurs in April

The April Lyrids are a meteor shower lasting from about April 15 to April 29 each year. The radiant of the meteor shower is located near the constellations Lyra and Hercules, near the bright star Vega. The peak of the shower is typically around April 22–23 each year.

<span class="mw-page-title-main">Arietids</span>

The Arietids are a strong meteor shower that lasts from May 22 to July 2 each year, and peaks on June 7. The Arietids, along with the Zeta Perseids, are the most intense daylight meteor showers of the year. The source of the shower is unknown, but scientists suspect that they come from the asteroid 1566 Icarus, although the orbit also corresponds similarly to 96P/Machholz.

<span class="mw-page-title-main">Tau Herculids</span> Annual meteor shower in May/June

The Tau Herculids are a meteor shower that when discovered in 1930 appeared to originate from the star Tau Herculis. The parent comet of the Tau Herculids is periodic comet Schwassmann-Wachmann 3 with a 5.4 year orbital period. This meteor shower occurs from May 19 - June 19. The meteor shower was first observed by the Kwasan Observatory in Kyoto, Japan in May 1930. The Tau Herculids' average radiant was α=236°, δ=+41°. Due to orbital perturbations of the meteor streams by Jupiter, 2022 activity will have a radiant of R.A. = 13:56 (209), Decl. = +28. The meteors are relatively slow moving making atmospheric entry at around 16 km/s (36,000 mph).

<span class="mw-page-title-main">Leonis Minorids</span> Meteor shower

Leonis Minorids is a weak meteor shower that takes place from October 13 till November 3 each year, peaking around October 20–23. With a weak moon the meteor shower may be visible with the naked eye, however this meteor shower is best observed only from the Northern Hemisphere with telescopic plotting. This meteor shower is linked to comet C/1739 K1 and radiates from the constellation Leo Minor, which is a faint constellation north of Leo. The meteor shower often only produces 2 meteors an hour. The meteors pass at an average speed of 62 kilometers per second.

<span class="mw-page-title-main">Alpha Monocerotids</span>

The Alpha Monocerotids is a meteor shower active from 15 to 25 November, with its peak occurring on 21 or 22 November. The speed of its meteors is 65 km/s, which is close to the maximum possible speed for meteors of about 73 km/s. Normally it has a low Zenithal Hourly Rate (ZHR), but occasionally it produces much more intense meteor storms that last less than an hour: such outbursts were observed in 1925, 1935, 1985, and 1995. The 1925 and 1935 storms both reached levels passing 1,000 ZHR.

<span class="mw-page-title-main">209P/LINEAR</span>

209P/LINEAR is a periodic comet with an orbital period of 5.1 years. The comet has extremely low activity for its size and is probably in the process of evolving into an extinct comet.

<span class="mw-page-title-main">252P/LINEAR</span> Periodic comet and near-earth object

Comet 252P/LINEAR is a periodic comet and near-Earth object discovered by the LINEAR survey on April 7, 2000. The comet is a Jupiter family comet, meaning that it passes quite close to the orbit of Jupiter.

References

  1. 1 2 3 Jenniskens, Peter (2006). "The sunskirting streams: Arietids and δ-Aquariids". Meteor Showers and Their Parent Comets. Cambridge University Press. pp. 423–37. ISBN   978-0-521-85349-1.
  2. "Meteor Shower Calendar | IMO | Page 2009" . Retrieved 2022-09-27.
  3. 1 2 "Meteor Showers Online".
  4. Öpik, Ernst (September 1950). "Interstellar Meteors and Related Problems". Irish Astronomical Journal. 1 (3): 80–96. Bibcode:1950IrAJ....1...80O.