Split Lie algebra

Last updated

In the mathematical field of Lie theory, a split Lie algebra is a pair where is a Lie algebra and is a splitting Cartan subalgebra , where "splitting" means that for all , is triangularizable. If a Lie algebra admits a splitting, it is called a splittable Lie algebra. [1] Note that for reductive Lie algebras, the Cartan subalgebra is required to contain the center.

Contents

Over an algebraically closed field such as the complex numbers, all semisimple Lie algebras are splittable (indeed, not only does the Cartan subalgebra act by triangularizable matrices, but even stronger, it acts by diagonalizable ones) and all splittings are conjugate; thus split Lie algebras are of most interest for non-algebraically closed fields.

Split Lie algebras are of interest both because they formalize the split real form of a complex Lie algebra, and because split semisimple Lie algebras (more generally, split reductive Lie algebras) over any field share many properties with semisimple Lie algebras over algebraically closed fields – having essentially the same representation theory, for instance – the splitting Cartan subalgebra playing the same role as the Cartan subalgebra plays over algebraically closed fields. This is the approach followed in ( Bourbaki 2005 ), for instance.

Properties

Split real Lie algebras

For a real Lie algebra, splittable is equivalent to either of these conditions: [4]

Every complex semisimple Lie algebra has a unique (up to isomorphism) split real Lie algebra, which is also semisimple, and is simple if and only if the complex Lie algebra is. [5]

For real semisimple Lie algebras, split Lie algebras are opposite to compact Lie algebras – the corresponding Lie group is "as far as possible" from being compact.

Examples

The split real forms for the complex semisimple Lie algebras are: [6]

These are the Lie algebras of the split real groups of the complex Lie groups.

Note that for and , the real form is the real points of (the Lie algebra of) the same algebraic group, while for one must use the split forms (of maximally indefinite index), as the group SO is compact.

See also

Related Research Articles

<span class="mw-page-title-main">Lie algebra</span> Algebraic structure used in analysis

In mathematics, a Lie algebra is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. In other words, a Lie algebra is an algebra over a field for which the multiplication operation is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors and is denoted . A Lie algebra is typically a non-associative algebra. However, every associative algebra gives rise to a Lie algebra, with the Lie bracket defined as the commutator .

In the mathematical theory of compact Lie groups a special role is played by torus subgroups, in particular by the maximal torus subgroups.

<span class="mw-page-title-main">Linear algebraic group</span> Subgroup of the group of invertible n×n matrices

In mathematics, a linear algebraic group is a subgroup of the group of invertible matrices that is defined by polynomial equations. An example is the orthogonal group, defined by the relation where is the transpose of .

E<sub>8</sub> (mathematics) 248-dimensional exceptional simple Lie group

In mathematics, E8 is any of several closely related exceptional simple Lie groups, linear algebraic groups or Lie algebras of dimension 248; the same notation is used for the corresponding root lattice, which has rank 8. The designation E8 comes from the Cartan–Killing classification of the complex simple Lie algebras, which fall into four infinite series labeled An, Bn, Cn, Dn, and five exceptional cases labeled G2, F4, E6, E7, and E8. The E8 algebra is the largest and most complicated of these exceptional cases.

<span class="mw-page-title-main">Killing form</span>

In mathematics, the Killing form, named after Wilhelm Killing, is a symmetric bilinear form that plays a basic role in the theories of Lie groups and Lie algebras. Cartan's criteria show that Killing form has a close relationship to the semisimplicity of the Lie algebras.

In mathematics, the Cartan decomposition is a decomposition of a semisimple Lie group or Lie algebra, which plays an important role in their structure theory and representation theory. It generalizes the polar decomposition or singular value decomposition of matrices. Its history can be traced to the 1880s work of Élie Cartan and Wilhelm Killing.

<span class="mw-page-title-main">Cartan subalgebra</span> Nilpotent subalgebra of a Lie algebra

In mathematics, a Cartan subalgebra, often abbreviated as CSA, is a nilpotent subalgebra of a Lie algebra that is self-normalising. They were introduced by Élie Cartan in his doctoral thesis. It controls the representation theory of a semi-simple Lie algebra over a field of characteristic .

<span class="mw-page-title-main">Semisimple Lie algebra</span> Direct sum of simple Lie algebras

In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras..

In mathematics, a maximal compact subgroupK of a topological group G is a subgroup K that is a compact space, in the subspace topology, and maximal amongst such subgroups.

<span class="mw-page-title-main">Symmetric space</span> A (pseudo-)Riemannian manifold whose geodesics are reversible.

In mathematics, a symmetric space is a Riemannian manifold whose group of symmetries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, leading to consequences in the theory of holonomy; or algebraically through Lie theory, which allowed Cartan to give a complete classification. Symmetric spaces commonly occur in differential geometry, representation theory and harmonic analysis.

<span class="mw-page-title-main">Hermitian symmetric space</span> Manifold with inversion symmetry

In mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds.

In mathematics, the Littelmann path model is a combinatorial device due to Peter Littelmann for computing multiplicities without overcounting in the representation theory of symmetrisable Kac–Moody algebras. Its most important application is to complex semisimple Lie algebras or equivalently compact semisimple Lie groups, the case described in this article. Multiplicities in irreducible representations, tensor products and branching rules can be calculated using a coloured directed graph, with labels given by the simple roots of the Lie algebra.

In mathematics, the Freudenthal magic square is a construction relating several Lie algebras. It is named after Hans Freudenthal and Jacques Tits, who developed the idea independently. It associates a Lie algebra to a pair of division algebras A, B. The resulting Lie algebras have Dynkin diagrams according to the table at the right. The "magic" of the Freudenthal magic square is that the constructed Lie algebra is symmetric in A and B, despite the original construction not being symmetric, though Vinberg's symmetric method gives a symmetric construction.

In the mathematical study of Lie algebras and Lie groups, a Satake diagram is a generalization of a Dynkin diagram introduced by Satake (1960, p.109) whose configurations classify simple Lie algebras over the field of real numbers. The Satake diagrams associated to a Dynkin diagram classify real forms of the complex Lie algebra corresponding to the Dynkin diagram.

<span class="mw-page-title-main">Real form (Lie theory)</span>

In mathematics, the notion of a real form relates objects defined over the field of real and complex numbers. A real Lie algebra g0 is called a real form of a complex Lie algebra g if g is the complexification of g0:

In mathematics, a regular element of a Lie algebra or Lie group is an element whose centralizer has dimension as small as possible. For example, in a complex semisimple Lie algebra, an element is regular if its centralizer in has dimension equal to the rank of , which in turn equals the dimension of some Cartan subalgebra . An element a Lie group is regular if its centralizer has dimension equal to the rank of .

<span class="mw-page-title-main">Borel–de Siebenthal theory</span>

In mathematics, Borel–de Siebenthal theory describes the closed connected subgroups of a compact Lie group that have maximal rank, i.e. contain a maximal torus. It is named after the Swiss mathematicians Armand Borel and Jean de Siebenthal who developed the theory in 1949. Each such subgroup is the identity component of the centralizer of its center. They can be described recursively in terms of the associated root system of the group. The subgroups for which the corresponding homogeneous space has an invariant complex structure correspond to parabolic subgroups in the complexification of the compact Lie group, a reductive algebraic group.

<span class="mw-page-title-main">Complexification (Lie group)</span> Universal construction of a complex Lie group from a real Lie group

In mathematics, the complexification or universal complexification of a real Lie group is given by a continuous homomorphism of the group into a complex Lie group with the universal property that every continuous homomorphism of the original group into another complex Lie group extends compatibly to a complex analytic homomorphism between the complex Lie groups. The complexification, which always exists, is unique up to unique isomorphism. Its Lie algebra is a quotient of the complexification of the Lie algebra of the original group. They are isomorphic if the original group has a quotient by a discrete normal subgroup which is linear.

<span class="mw-page-title-main">Glossary of Lie groups and Lie algebras</span>

This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.

In mathematics, a complex Lie algebra is a Lie algebra over the complex numbers.

References

  1. ( Bourbaki 2005 , Chapter VIII, Section 2: Root System of a Split Semi-Simple Lie Algebra, p. 77 )
  2. ( Bourbaki 2005 , Chapter VIII, Section 2: Root System of a Split Semi-Simple Lie Algebra, Exercise 2 a p. 77 )
  3. ( Bourbaki 2005 , Chapter VIII, Section 2: Root System of a Split Semi-Simple Lie Algebra, Exercise 2 b p. 77 )
  4. ( Onishchik & Vinberg 1994 , p. 157)
  5. ( Onishchik & Vinberg 1994 , Theorem 4.4, p. 158)
  6. ( Onishchik & Vinberg 1994 , p. 158)