Spring scale

Last updated
A spring scale Weeghaak.JPG
A spring scale

A spring scale, spring balance or newton meter is a type of mechanical force gauge or weighing scale. It consists of a spring fixed at one end with a hook to attach an object at the other. [1] It works in accordance with Hooke's Law, which states that the force needed to extend or compress a spring by some distance scales linearly with respect to that distance. Therefore, the scale markings on the spring balance are equally spaced.

Contents

A spring balance can be calibrated for the accurate measurement of mass in the location in which they are used, but many spring balances are marked right on their face "Not Legal for Trade" or words of similar import due to the approximate nature of the theory used to mark the scale. Also, the spring in the scale can permanently stretch with repeated use.

A spring scale will only read correctly in a frame of reference where the acceleration in the spring axis is constant (such as on earth, where the acceleration is due to gravity). This can be shown by taking a spring scale into an elevator, where the weight measured will change as the elevator moves up and down changing velocities.

If two or more spring balances are hung one below the other in series, each of the scales will read approximately the same, the full weight of the body hung on the lower scale. The scale on top would read slightly heavier due to also supporting the weight of the lower scale itself.

Spring balances come in different sizes. Generally, small scales that measure newtons will have a less firm spring (one with a smaller spring constant) than larger ones that measure tens, hundreds or thousands of newtons or even more depending on the scale of newtons used. The largest spring scale ranged in measurement from 5000 to 8000 newtons.

A spring balance may be labeled in both units of force (poundals, Newtons) and mass (pounds, kilograms/grams). Strictly speaking, only the force values are correctly labeled. In order to infer that the labeled mass values are correct, an object must be hung from the spring balance at rest in an inertial reference frame, interacting with no other objects but the scale itself.

Uses

Example of spiral balancer for Sash window Spiral Balancer 001.JPG
Example of spiral balancer for Sash window

Main uses of spring balances are to weigh heavy loads such as trucks, storage silos, and material carried on a conveyor belt. They are also common in science education as basic accelerators. They are used when the accuracy afforded by other types of scales can be sacrificed for simplicity, cheapness, and robustness.

A spring balance measures the weight of an object by opposing the force of gravity acting with the force of an extended spring.

History

The first spring balance in Britain was made around 1770 by Richard Salter of Bilston, near Wolverhampton. [2] He and his nephews John & George founded the firm of George Salter & Co., still notable makers of scales and balances, who in 1838 patented the spring balance. They also applied the same spring balance principle to steam locomotive safety valves, replacing the earlier deadweight valves. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Force</span> Influence that can change motion of an object

In physics, a force is an influence that can cause an object to change its velocity, i.e., to accelerate, meaning a change in speed or direction, unless counterbalanced by other forces. The concept of force makes the everyday notion of pushing or pulling mathematically precise. Because the magnitude and direction of a force are both important, force is a vector quantity. The SI unit of force is the newton (N), and force is often represented by the symbol F.

<span class="mw-page-title-main">Mass</span> Amount of matter present in an object

Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a body, until the discovery of the atom and particle physics. It was found that different atoms and different elementary particles, theoretically with the same amount of matter, have nonetheless different masses. Mass in modern physics has multiple definitions which are conceptually distinct, but physically equivalent. Mass can be experimentally defined as a measure of the body's inertia, meaning the resistance to acceleration when a net force is applied. The object's mass also determines the strength of its gravitational attraction to other bodies.

<span class="mw-page-title-main">Weight</span> Force on a mass due to gravity

In science and engineering, the weight of an object, is the force acting on the object due to acceleration or gravity.

<span class="mw-page-title-main">Relative density</span> Ratio of two densities

Relative density, also called specific gravity, is a dimensionless quantity defined as the ratio of the density of a substance to the density of a given reference material. Specific gravity for liquids is nearly always measured with respect to water at its densest ; for gases, the reference is air at room temperature. The term "relative density" is preferred in SI, whereas the term "specific gravity" is gradually being abandoned.

<span class="mw-page-title-main">Newton (unit)</span> Unit of force in physics

The newton is the unit of force in the International System of Units (SI). It is defined as , the force which gives a mass of 1 kilogram an acceleration of 1 metre per second squared.

The pound of force or pound-force is a unit of force used in some systems of measurement, including English Engineering units and the foot–pound–second system.

<span class="mw-page-title-main">Buoyancy</span> Upward force that opposes the weight of an object immersed in fluid

Buoyancy, or upthrust, is an upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the pressure at the bottom of a column of fluid is greater than at the top of the column. Similarly, the pressure at the bottom of an object submerged in a fluid is greater than at the top of the object. The pressure difference results in a net upward force on the object. The magnitude of the force is proportional to the pressure difference, and is equivalent to the weight of the fluid that would otherwise occupy the submerged volume of the object, i.e. the displaced fluid.

<span class="mw-page-title-main">Accelerometer</span> Device that measures proper acceleration

An accelerometer is a device that measures the proper acceleration of an object. Proper acceleration is the acceleration of the object relative to an observer who is in free fall. Proper acceleration is different from coordinate acceleration, which is acceleration with respect to a given coordinate system, which may or may not be accelerating. For example, an accelerometer at rest on the surface of the Earth will measure an acceleration due to Earth's gravity straight upwards of about g ≈ 9.81 m/s2. By contrast, an accelerometer that is in free fall will measure zero acceleration.

Archimedes' principle states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. Archimedes' principle is a law of physics fundamental to fluid mechanics. It was formulated by Archimedes of Syracuse.

g-force Term for accelerations felt as weight in multiples of standard gravity

The g-force or gravitational force equivalent is mass-specific force, expressed in units of standard gravity. It is used for sustained accelerations, that cause a perception of weight. For example, an object at rest on Earth's surface is subject to 1 g, equaling the conventional value of gravitational acceleration on Earth, about 9.8 m/s2. More transient acceleration, accompanied with significant jerk, is called shock.

<span class="mw-page-title-main">Wheelbase</span> Distance between the centers of the front and rear wheels

In both road and rail vehicles, the wheelbase is the horizontal distance between the centers of the front and rear wheels. For road vehicles with more than two axles, the wheelbase is the distance between the steering (front) axle and the centerpoint of the driving axle group. In the case of a tri-axle truck, the wheelbase would be the distance between the steering axle and a point midway between the two rear axles.

<span class="mw-page-title-main">Weighing scale</span> Instrument to measure the weight of an object

A scale or balance is a device used to measure weight or mass. These are also known as mass scales, weight scales, mass balances, and weight balances.

<span class="mw-page-title-main">Normal force</span> Force exerted on an object by a body with which it is in contact, and vice versa

In mechanics, the normal force is the component of a contact force that is perpendicular to the surface that an object contacts, as in Figure 1. In this instance normal is used in the geometric sense and means perpendicular, as opposed to the common language use of normal meaning "ordinary" or "expected". A person standing still on a platform is acted upon by gravity, which would pull them down towards the Earth's core unless there were a countervailing force from the resistance of the platform's molecules, a force which is named the "normal force".

<span class="mw-page-title-main">Gravimetry</span> Measurement of the strength of a gravitational field

Gravimetry is the measurement of the strength of a gravitational field. Gravimetry may be used when either the magnitude of a gravitational field or the properties of matter responsible for its creation are of interest. The study of gravity changes belongs to geodynamics.

As described by the third of Newton's laws of motion of classical mechanics, all forces occur in pairs such that if one object exerts a force on another object, then the second object exerts an equal and opposite reaction force on the first. The third law is also more generally stated as: "To every action there is always opposed an equal reaction: or the mutual actions of two bodies upon each other are always equal, and directed to contrary parts." The attribution of which of the two forces is the action and which is the reaction is arbitrary. Either of the two can be considered the action, while the other is its associated reaction.

<span class="mw-page-title-main">Analytical balance</span> Type of digital balance

An analytical balance is a class of balance designed to measure small mass in the sub-milligram range. The measuring pan of an analytical balance is inside a transparent enclosure with doors so that dust does not collect and so any air currents in the room do not affect the balance's operation. This enclosure is often called a draft shield. The use of a mechanically vented balance safety enclosure, which has uniquely designed acrylic airfoils, allows a smooth turbulence-free airflow that prevents balance fluctuation and the measure of mass down to 1 μg without fluctuations or loss of product. Also, the sample must be at room temperature to prevent natural convection from forming air currents inside the enclosure from causing an error in reading. Single pan mechanical substitution balance is a method of maintaining consistent response throughout the useful capacity of the balance. This is achieved by maintaining a constant load on the balance beam and thus the fulcrum, by subtracting mass on the same side of the beam as which the sample is added.

The standard acceleration of gravity or standard acceleration of free fall, often called simply standard gravity and denoted by ɡ0 or ɡn, is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. It is a constant defined by standard as 9.80665 m/s2. This value was established by the 3rd General Conference on Weights and Measures and used to define the standard weight of an object as the product of its mass and this nominal acceleration. The acceleration of a body near the surface of the Earth is due to the combined effects of gravity and centrifugal acceleration from the rotation of the Earth ; the total is about 0.5% greater at the poles than at the Equator.

<span class="mw-page-title-main">Gravity of Earth</span>

The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation and the centrifugal force . It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm .

<span class="mw-page-title-main">Mass versus weight</span> Distinction between mass and weight

In common usage, the mass of an object is often referred to as its weight, though these are in fact different concepts and quantities. Nevertheless, one object will always weigh more than another with less mass if both are subject to the same gravity.

<span class="mw-page-title-main">Centrifugal force</span> Type of inertial force

Centrifugal force is an inertial force in Newtonian mechanics that appears to act on all objects when viewed in a rotating frame of reference. It is directed radially away from the axis of rotation. The magnitude of centrifugal force F on an object of mass m at the distance r from the axis of rotation of a frame of reference rotating with angular velocity ω is:

References

  1. "A brief history of weights and measures" (PDF). California Department of Food and Agriculture Division of Measurement Standards.
  2. 1 2 Hewison, Christian H. (1983). Locomotive Boiler Explosions. David and Charles. p. 18. ISBN   0-7153-8305-1.