Static dispatch

Last updated

In computing, static dispatch is a form of polymorphism fully resolved during compile time. It is a form of method dispatch, which describes how a language or environment will select which implementation of a method or function to use. [1]

Contents

Examples are templates in C++, and generic programming in Fortran and other languages, in conjunction with function overloading (including operator overloading). Code is said to be monomorphised, with specific data types deduced and traced through the call graph, in order to instantiate specific versions of generic functions, and select specific function calls based on the supplied definitions.

This contrasts with dynamic dispatch, which is based on runtime information (such as vtable pointers and other forms of run time type information).

Static dispatch is possible because there is a guarantee of there only ever being a single implementation of the method in question. Static dispatch is typically faster than dynamic dispatch which by nature has higher overhead.

Example in Rust

In Rust. [2]

traitSpeak{fnspeak(&self);}structCat;implSpeakforCat{fnspeak(&self){println!("Meow!");}}fntalk<T: Speak>(pet: T){pet.speak();}fnmain(){letpet=Cat;talk(pet);}

Rust will monomorphize this when compiled into:

fntalk_cat(pet: Cat){pet.speak();}

See also

Related Research Articles

<span class="mw-page-title-main">C++</span> General-purpose programming language

C++ is a high-level, general-purpose programming language created by Danish computer scientist Bjarne Stroustrup. First released in 1985 as an extension of the C programming language, it has since expanded significantly over time; as of 1997 C++ has object-oriented, generic, and functional features, in addition to facilities for low-level memory manipulation. It is almost always implemented as a compiled language, and many vendors provide C++ compilers, including the Free Software Foundation, LLVM, Microsoft, Intel, Embarcadero, Oracle, and IBM.

Multiple dispatch or multimethods is a feature of some programming languages in which a function or method can be dynamically dispatched based on the run-time (dynamic) type or, in the more general case, some other attribute of more than one of its arguments. This is a generalization of single-dispatch polymorphism where a function or method call is dynamically dispatched based on the derived type of the object on which the method has been called. Multiple dispatch routes the dynamic dispatch to the implementing function or method using the combined characteristics of one or more arguments.

In computer programming, a generic function is a function defined for polymorphism.

In computer programming, a type system is a logical system comprising a set of rules that assigns a property called a type to every term. Usually the terms are various language constructs of a computer program, such as variables, expressions, functions, or modules. A type system dictates the operations that can be performed on a term. For variables, the type system determines the allowed values of that term. Type systems formalize and enforce the otherwise implicit categories the programmer uses for algebraic data types, data structures, or other components.

This is a list of terms found in object-oriented programming.

A method in object-oriented programming (OOP) is a procedure associated with an object, and generally also a message. An object consists of state data and behavior; these compose an interface, which specifies how the object may be used. A method is a behavior of an object parametrized by a user.

In programming language theory and type theory, polymorphism is the use of a single symbol to represent multiple different types.

In object-oriented programming languages, a mixin is a class that contains methods for use by other classes without having to be the parent class of those other classes. How those other classes gain access to the mixin's methods depends on the language. Mixins are sometimes described as being "included" rather than "inherited".

In computer science, a type signature or type annotation defines the inputs and outputs for a function, subroutine or method. A type signature includes the number, types, and order of the arguments required by a function. A type signature is typically used during overload resolution for choosing the correct definition of a function to be called among many overloaded forms.

In object-oriented programming such as is often used in C++ and Object Pascal, a virtual function or virtual method is an inheritable and overridable function or method that is dispatched dynamically. Virtual functions are an important part of (runtime) polymorphism in object-oriented programming (OOP). They allow for the execution of target functions that were not precisely identified at compile time.

In some programming languages, function overloading or method overloading is the ability to create multiple functions of the same name with different implementations. Calls to an overloaded function will run a specific implementation of that function appropriate to the context of the call, allowing one function call to perform different tasks depending on context.

This article compares two programming languages: C# with Java. While the focus of this article is mainly the languages and their features, such a comparison will necessarily also consider some features of platforms and libraries. For a more detailed comparison of the platforms, see Comparison of the Java and .NET platforms.

In compiler construction, name mangling is a technique used to solve various problems caused by the need to resolve unique names for programming entities in many modern programming languages.

In computer science, dynamic dispatch is the process of selecting which implementation of a polymorphic operation to call at run time. It is commonly employed in, and considered a prime characteristic of, object-oriented programming (OOP) languages and systems.

In computing, late binding or dynamic linkage—though not an identical process to dynamically linking imported code libraries—is a computer programming mechanism in which the method being called upon an object, or the function being called with arguments, is looked up by name at runtime. In other words, a name is associated with a particular operation or object at runtime, rather than during compilation. The name dynamic binding is sometimes used, but is more commonly used to refer to dynamic scope.

Many programming language type systems support subtyping. For instance, if the type Cat is a subtype of Animal, then an expression of type Cat should be substitutable wherever an expression of type Animal is used.

In computer programming, a trait is a concept used in programming languages which represents a set of methods that can be used to extend the functionality of a class.

this, self, and Me are keywords used in some computer programming languages to refer to the object, class, or other entity of which the currently running code is a part. The entity referred to by these keywords thus depends on the execution context. Different programming languages use these keywords in slightly different ways. In languages where a keyword like "this" is mandatory, the keyword is the only way to access data and methods stored in the current object. Where optional, they can disambiguate variables and functions with the same name.

<span class="mw-page-title-main">Rust (programming language)</span> General-purpose programming language

Rust is a multi-paradigm, general-purpose programming language that emphasizes performance, type safety, and concurrency. It enforces memory safety, meaning that all references point to valid memory, without requiring the use of automated memory management techniques such as garbage collection. To simultaneously enforce memory safety and prevent data races, its "borrow checker" tracks the object lifetime of all references in a program during compilation. Rust was influenced by ideas from functional programming, including immutability, higher-order functions, and algebraic data types. It is popular for systems programming.

<span class="mw-page-title-main">Zig (programming language)</span> A general-purpose programming language, and toolchain to build Zig/C/C++ code

Zig is an imperative, general-purpose, statically typed, compiled system programming language designed by Andrew Kelley. It is intended to be a successor to the C programming language, with the goals of being even smaller and simpler to program in while also offering modern features, new optimizations and a variety of safety mechanisms while not as demanding of runtime safety as seen in other languages. It is distinct from languages like Go, Rust and Carbon, which have similar goals but also target the C++ space.

References

  1. Elements of Clojure. Lulu.com. 2019. p. 68. ISBN   9780359360581 . Retrieved 17 July 2022.
  2. "Generic Data Types - The Rust Programming Language". doc.rust-lang.org.