Stizolobic acid

Last updated
Stizolobic acid
Stizolobic acid.svg
Names
IUPAC name
4-[(2S)-2-amino-3-hydroxy-3-oxo-propyl]-6-oxo-pyran-2-carboxylic acid
Systematic IUPAC name
4-[(2S)-2-amino-3-hydroxy-3-oxo-propyl]-6-oxo-pyran-2-carboxylic acid
Identifiers
3D model (JSmol)
ChemSpider
KEGG
PubChem CID
UNII
  • InChI=1/C9H9NO6/c10-5(8(12)13)1-4-2-6(9(14)15)16-7(11)3-4/h2-3,5H,1,10H2,(H,12,13)(H,14,15)/t5-/m0/s1
  • c1c(cc(=O)oc1C(=O)O)C[C@@H](C(=O)O)N
Properties
C9H9NO6
Molar mass 227.172 g·mol−1
Density 1.604 g/cm3
Melting point 304.65 °C (580.37 °F; 577.80 K)
Boiling point 528.25 °C (982.85 °F; 801.40 K) at 760 mmHg
2.634e+005 mg/L
Vapor pressure 1.44E-12 mmHg
Hazards
Flash point 273.2 °C (523.8 °F; 546.3 K)
Related compounds
Other anions
stizolobinic acid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Stizolobic acid is an amino acid found in the sap epicotyl tips of etiolated seedlings of Stizolobium hassjoo . [1]

Biosynthesis

Stizolobium hassjoo catalyzes the conversion of L-dihydroxyphenylalanine into stizolobinic acid, alpha-amino-6-carboxy-2-oxo-2H-pyran-3-propionic acid, and stizolobic acid, alpha-amino-6-carboxy-2-oxo-2H-pyran-4-propionic acid, in the presence of NADP+ or NAD+ under aerobic conditions.

Related Research Articles

<span class="mw-page-title-main">Propionic acid</span> Carboxylic acid with chemical formula CH3CH2CO2H

Propionic acid is a naturally occurring carboxylic acid with chemical formula CH
3
CH
2
CO
2
H
. It is a liquid with a pungent and unpleasant smell somewhat resembling body odor. The anion CH
3
CH
2
CO
2
as well as the salts and esters of propionic acid are known as propionates or propanoates.

Propionic acidemia, also known as propionic aciduria or propionyl-CoA carboxylase deficiency, is a rare autosomal recessive metabolic disorder, classified as a branched-chain organic acidemia.

Thailand's Psychotropic Substances Act is a law designed to regulate certain mind-altering drugs. According to the Office of the Narcotics Control Board, "The Act directly resulted from the Convention on Psychotropic Substances 1971 of which Thailand is a party." The Act divides psychotropic drugs into four Schedules. Offenses involving Schedule I and II drugs carry heavier penalties than those involving Schedule III and IV drugs. Note that this statute does not regulate most opioids, cocaine, or some amphetamines. The vast majority of narcotic painkillers, along with cocaine and most amphetamines are regulated under the Narcotics Act.

<i>Controlled Drugs and Substances Act</i> Canadian federal drug regulation act

The Controlled Drugs and Substances Act is Canada's federal drug control statute. Passed in 1996 under Prime Minister Jean Chrétien's government, it repeals the Narcotic Control Act and Parts III and IV of the Food and Drugs Act, and establishes eight Schedules of controlled substances and two Classes of precursors. It provides that "The Governor in Council may, by order, amend any of Schedules I to VIII by adding to them or deleting from them any item or portion of an item, where the Governor in Council deems the amendment to be necessary in the public interest."

The branched-chain α-ketoacid dehydrogenase complex is a multi-subunit complex of enzymes that is found on the mitochondrial inner membrane. This enzyme complex catalyzes the oxidative decarboxylation of branched, short-chain alpha-ketoacids. BCKDC is a member of the mitochondrial α-ketoacid dehydrogenase complex family comprising pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase, key enzymes that function in the Krebs cycle.

Carboxy-lyases, also known as decarboxylases, are carbon–carbon lyases that add or remove a carboxyl group from organic compounds. These enzymes catalyze the decarboxylation of amino acids, beta-keto acids and alpha-keto acids.

<span class="mw-page-title-main">1-Pyrroline-5-carboxylic acid</span> Chemical compound

1-Pyrroline-5-carboxylic acid is a cyclic imino acid. Its conjugate base and anion is 1-pyrroline-5-carboxylate (P5C). In solution, P5C is in spontaneous equilibrium with glutamate-5-semialdhyde (GSA).

In enzymology, a stizolobate synthase (EC 1.13.11.29) is an enzyme that catalyzes the chemical reaction

The enzyme 2,2-dialkylglycine decarboxylase (pyruvate) (EC 4.1.1.64) catalyzes the chemical reaction

<span class="mw-page-title-main">Aminocarboxymuconate-semialdehyde decarboxylase</span>

The enzyme aminocarboxymuconate-semialdehyde decarboxylase (EC 4.1.1.45) catalyzes the chemical reaction

The enzyme branched-chain-2-oxoacid decarboxylase (EC 4.1.1.72) catalyzes the chemical reaction

The enzyme 2-pyrone-4,6-dicarboxylate lactonase (EC 3.1.1.57, LigI) catalyzes the reversible hydrolytic reaction

<span class="mw-page-title-main">Oxoeicosanoid receptor 1</span> Protein-coding gene in the species Homo sapiens

Oxoeicosanoid receptor 1 (OXER1) also known as G-protein coupled receptor 170 (GPR170) is a protein that in humans is encoded by the OXER1 gene located on human chromosome 2p21; it is the principal receptor for the 5-Hydroxyicosatetraenoic acid family of carboxy fatty acid metabolites derived from arachidonic acid. The receptor has also been termed hGPCR48, HGPCR48, and R527 but OXER1 is now its preferred designation. OXER1 is a G protein-coupled receptor (GPCR) that is structurally related to the hydroxy-carboxylic acid (HCA) family of G protein-coupled receptors whose three members are HCA1 (GPR81), HCA2, and HCA3 ; OXER1 has 30.3%, 30.7%, and 30.7% amino acid sequence identity with these GPCRs, respectively. It is also related to the recently defined receptor, GPR31, for the hydroxyl-carboxy fatty acid 12-HETE.

In enzymology, an alanine-oxo-acid transaminase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">IDRA-21</span> Chemical compound

IDRA-21 is a positive allosteric modulator of the AMPA receptor and a benzothiadiazine derivative. It is a chiral molecule, with (+)-IDRA-21 being the active form.

<span class="mw-page-title-main">Keto acid</span> Organic compounds with a –COOH group and a C=O group

In organic chemistry, keto acids or ketoacids are organic compounds that contain a carboxylic acid group and a ketone group. In several cases, the keto group is hydrated. The alpha-keto acids are especially important in biology as they are involved in the Krebs citric acid cycle and in glycolysis.

<span class="mw-page-title-main">Endothion</span> Chemical compound

Endothion is an organic compound used as an insecticide and acaricides. It is part of the chemical class of organophosphorus compounds. It is generally described as white crystals with a slight odor. It is used as an insecticide, but not sold in the United States or Canada.

2-hydroxy-4-carboxymuconate semialdehyde hemiacetal dehydrogenase (EC 1.1.1.312, 2-hydroxy-4-carboxymuconate 6-semialdehyde dehydrogenase, 4-carboxy-2-hydroxy-cis,cis-muconate-6-semialdehyde:NADP+ oxidoreductase, alpha-hydroxy-gamma-carboxymuconic epsilon-semialdehyde dehydrogenase, 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase, LigC, ProD) is an enzyme with systematic name 4-carboxy-2-hydroxymuconate semialdehyde hemiacetal:NADP+ 2-oxidoreductase. This enzyme catalyses the following chemical reaction

2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one 2-D-glucosyltransferase is an enzyme with systematic name UDP-alpha-D-glucose:2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one 2-beta-D-glucosyltransferase. This enzyme catalyses the following chemical reaction

The Davis–Beirut reaction is N,N-bond forming heterocyclization that creates numerous types of 2H-indazoles and indazolones in both acidic and basic conditions The Davis–Beirut reaction is named after Mark Kurth and Makhluf Haddadin's respective universities; University of California, Davis and American University of Beirut, and is appealing because it uses inexpensive starting materials and does not require toxic metals.

References

  1. Hattori, S.; Komamine, A. (1959). "Stizolobic Acid: a New Amino-Acid in Stizolobium hassjoo". Nature. 183 (4668): 1116. Bibcode:1959Natur.183.1116H. doi:10.1038/1831116a0. S2CID   4219696.