Stokes lens

Last updated
Stokes lens
Synonyms Stokes' lens
Test of Astigmatism

Stokes lens also known as variable power cross cylinder lens [1] is a lens used to diagnose a type of refractive error known as astigmatism.

Contents

Lens design

The Stokes lens also known as variable power cross cylinder lens, in its standard version, is a lens combination consisted of equal but opposite (one plano-convex and other plano-concave) power cylindrical lenses attached together in a way so that the lenses be rotated in opposite directions. [2] [3] When the axes are parallel, the two powers cancel each other out to achieve the resulting power zero; When the axes are vertical, a sphero-cylindrical lens with maximum power is obtained. [3]

Uses

Stokes lens is a lens used to diagnose and measure astigmatism. [4] [5]

Adaptations

American ophthalmologist Edward Jackson revised the Stokes lens concept and made a cross cylinder lens to refine power and axis of astigmatism. [2] This lens combination is known as Jackson cross cylinder. [2] Based on the Stokes lens, James P. Foley and Charles E. Campbell made a variable power astigmatic lens which is combination of two identical cylindrical powers instead of equal and opposite powers. [2] [6]

History

In 1837, English mathematician and astronomer George Biddell Airy invented the cylindric lens and used it to correct astigmatism. [3] Irish English physicist and mathematician George Stokes invented Stokes lens in 1849. [3]

Related Research Articles

<span class="mw-page-title-main">Optical aberration</span> Deviation from perfect paraxial optical behavior

In optics, aberration is a property of optical systems, such as lenses, that causes light to be spread out over some region of space rather than focused to a point. Aberrations cause the image formed by a lens to be blurred or distorted, with the nature of the distortion depending on the type of aberration. Aberration can be defined as a departure of the performance of an optical system from the predictions of paraxial optics. In an imaging system, it occurs when light from one point of an object does not converge into a single point after transmission through the system. Aberrations occur because the simple paraxial theory is not a completely accurate model of the effect of an optical system on light, rather than due to flaws in the optical elements.

<span class="mw-page-title-main">Lens</span> Optical device which transmits and refracts light

A lens is a transmissive optical device that focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (elements), usually arranged along a common axis. Lenses are made from materials such as glass or plastic and are ground, polished, or molded to the required shape. A lens can focus light to form an image, unlike a prism, which refracts light without focusing. Devices that similarly focus or disperse waves and radiation other than visible light are also called "lenses", such as microwave lenses, electron lenses, acoustic lenses, or explosive lenses.

<span class="mw-page-title-main">Corrective lens</span> Type of lens

A corrective lens is a lens that is typically worn in front of the eye to improve daily vision. The most common use is to treat refractive errors: myopia, hypermetropia, astigmatism, and presbyopia. Glasses or "spectacles" are worn on the face a short distance in front of the eye. Contact lenses are worn directly on the surface of the eye. Intraocular lenses are surgically implanted most commonly after cataract removal but can be used for purely refractive purposes.

<span class="mw-page-title-main">Sir George Stokes, 1st Baronet</span> Anglo-Irish mathematician and physicist (1819–1903)

Sir George Gabriel Stokes, 1st Baronet, was an Anglo-Irish physicist and mathematician. Born in County Sligo, Ireland, Stokes spent all of his career at the University of Cambridge, where he was the Lucasian Professor of Mathematics from 1849 until his death in 1903. As a physicist, Stokes made seminal contributions to fluid mechanics, including the Navier–Stokes equations; and to physical optics, with notable works on polarization and fluorescence. As a mathematician, he popularised "Stokes' theorem" in vector calculus and contributed to the theory of asymptotic expansions. Stokes, along with Felix Hoppe-Seyler, first demonstrated the oxygen transport function of haemoglobin and showed colour changes produced by the aeration of haemoglobin solutions.

<span class="mw-page-title-main">Eyeglass prescription</span> Order written by an eyewear prescriber

An eyeglass prescription is an order written by an eyewear prescriber, such as an optometrist, that specifies the value of all parameters the prescriber has deemed necessary to construct and/or dispense corrective lenses appropriate for a patient. If an eye examination indicates that corrective lenses are appropriate, the prescriber generally provides the patient with an eyewear prescription at the conclusion of the exam.

An optical system with astigmatism is one where rays that propagate in two perpendicular planes have different foci. If an optical system with astigmatism is used to form an image of a cross, the vertical and horizontal lines will be in sharp focus at two different distances. The term comes from the Greek α- (a-) meaning "without" and στίγμα (stigma), "a mark, spot, puncture".

<span class="mw-page-title-main">Intraocular lens</span> Lens implanted in the eye to treat cataracts or myopia

Intraocular lens (IOL) is a lens implanted in the eye as part of a treatment for cataracts or myopia. If the natural lens is left in the eye, the IOL is known as phakic, otherwise it is a pseudophakic, or false lens. Such a lens is typically implanted during cataract surgery, after the eye's cloudy natural lens (cataract) has been removed. The pseudophakic IOL provides the same light-focusing function as the natural crystalline lens. The phakic type of IOL is placed over the existing natural lens and is used in refractive surgery to change the eye's optical power as a treatment for myopia (nearsightedness). This is an alternative to LASIK.

<span class="mw-page-title-main">Refractive error</span> Problem with focusing light accurately on the retina due to the shape of the eye

Refractive error, also known as refraction error, is a problem with focusing light accurately on the retina due to the shape of the eye and or cornea. The most common types of refractive error are near-sightedness, far-sightedness, astigmatism, and presbyopia. Near-sightedness results in far away objects being blurry, far-sightedness and presbyopia result in close objects being blurry, and astigmatism causes objects to appear stretched out or blurry. Other symptoms may include double vision, headaches, and eye strain.

<span class="mw-page-title-main">Aspheric lens</span> Type of lens

An aspheric lens or asphere is a lens whose surface profiles are not portions of a sphere or cylinder. In photography, a lens assembly that includes an aspheric element is often called an aspherical lens.

<span class="mw-page-title-main">Optical power</span> Degree to which an optical system converges or diverges light

In optics, optical power is the degree to which a lens, mirror, or other optical system converges or diverges light. It is equal to the reciprocal of the focal length of the device: P = 1/f. High optical power corresponds to short focal length. The SI unit for optical power is the inverse metre (m−1), which is commonly called the dioptre.

<span class="mw-page-title-main">Astigmatism</span> Type of eye defect

Astigmatism is a type of refractive error due to rotational asymmetry in the eye's refractive power. This results in distorted or blurred vision at any distance. Other symptoms can include eyestrain, headaches, and trouble driving at night. Astigmatism often occurs at birth and can change or develop later in life. If it occurs in early life and is left untreated, it may result in amblyopia.

Aniseikonia is an ocular condition where there is a significant difference in the perceived size of images. It can occur as an overall difference between the two eyes, or as a difference in a particular meridian. If the ocular image size in both eyes are equal, the condition is known as iseikonia.

<span class="mw-page-title-main">Cylindrical lens</span>

A cylindrical lens is a lens which focuses light into a line instead of a point, as a spherical lens would. The curved face or faces of a cylindrical lens are sections of a cylinder, and focus the image passing through it into a line parallel to intersection of the surface of the lens and a plane tangent to it along the cylinder's axis. The lens converges or diverges the image in the direction perpendicular to this line, and leaves it unaltered in the direction parallel to its cylinder's axis.

<span class="mw-page-title-main">Toric lens</span> Type of lens

A toric lens is a lens with different optical power and focal length in two orientations perpendicular to each other. One of the lens surfaces is shaped like a "cap" from a torus, and the other one is usually spherical. Such a lens behaves like a combination of a spherical lens and a cylindrical lens. Toric lenses are used primarily in eyeglasses, contact lenses and intraocular lenses to correct astigmatism.

<span class="mw-page-title-main">Laser beam profiler</span>

A laser beam profiler captures, displays, and records the spatial intensity profile of a laser beam at a particular plane transverse to the beam propagation path. Since there are many types of lasers — ultraviolet, visible, infrared, continuous wave, pulsed, high-power, low-power — there is an assortment of instrumentation for measuring laser beam profiles. No single laser beam profiler can handle every power level, pulse duration, repetition rate, wavelength, and beam size.

The eye, like any other optical system, suffers from a number of specific optical aberrations. The optical quality of the eye is limited by optical aberrations, diffraction and scatter. Correction of spherocylindrical refractive errors has been possible for nearly two centuries following Airy's development of methods to measure and correct ocular astigmatism. It has only recently become possible to measure the aberrations of the eye and with the advent of refractive surgery it might be possible to correct certain types of irregular astigmatism.

<span class="mw-page-title-main">Subjective refraction</span> Technique to determine the combination of lenses that will provide the best corrected visual acuity

Subjective Refraction is a technique to determine the combination of lenses that will provide the best corrected visual acuity (BCVA). It is a clinical examination used by orthoptists, optometrists and ophthalmologists to determine a patient's need for refractive correction, in the form of glasses or contact lenses. The aim is to improve current unaided vision or vision with current glasses. Glasses must also be comfortable visually. The sharpest final refraction is not always the final script the patient wears comfortably.

A stigmator is a component of electron microscopes that reduces astigmatism of the beam by imposing a weak electric or magnetic quadrupole field on the electron beam.

Edward Jackson was an American ophthalmologist better known for popularizing retinoscopy in the United States. He also described detecting astigmatism and its correct axis using a cross cylinder. The modified stokes lens he made was later known as Jackson cross cylinder.

<span class="mw-page-title-main">Jackson cross cylinder</span> Ophthalmic instrument

The Jackson cross cylinder (JCC) is an instrument used by ophthalmologists, orthoptists and optometrists in their routine eye examination, particularly in determination of corrective lens power in patients with astigmatism. It is also used for testing near point of the eye.

References

  1. Ferrer-Altabás, Sara; Micó, Vicente (10 April 2020). "Characterization of a compact low-cost Stokes lens for astigmatism compensation in optical instruments". Applied Optics. 59 (11): 3347–3352. Bibcode:2020ApOpt..59.3347F. doi:10.1364/AO.386247. ISSN   2155-3165. PMID   32400444. S2CID   216493169.
  2. 1 2 3 4 Ferrer-Altabás, Sara; Thibos, Larry; Micó, Vicente (14 March 2022). "Astigmatic Stokes lens revisited". Optics Express. 30 (6): 8974–8990. Bibcode:2022OExpr..30.8974F. doi: 10.1364/OE.450062 . ISSN   1094-4087. PMID   35299337. S2CID   245785084.
  3. 1 2 3 4 Wunsh, Stuart E. (10 July 2016). "The Cross Cylinder". Ento Key.
  4. "Stokes lens". TheFreeDictionary.com.
  5. Dennett, WS (1885). "The Stokes' Lens for Measuring Astigmatism". Transactions of the American Ophthalmological Society. 4: 106–10. PMC   1326669 . PMID   25258975.
  6. Foley, James; Campbell, Charles (1999-10-01). "An Optical Device with Variable Astigmatic Power". Optometry and Vision Science. 76 (9): 664–7. doi:10.1097/00006324-199909000-00025. PMID   10498009.