Strange loop

Last updated

A strange loop is a cyclic structure that goes through several levels in a hierarchical system. It arises when, by moving only upwards or downwards through the system, one finds oneself back where one started. Strange loops may involve self-reference and paradox. The concept of a strange loop was proposed and extensively discussed by Douglas Hofstadter in Gödel, Escher, Bach , and is further elaborated in Hofstadter's book I Am a Strange Loop , published in 2007.

Contents

A tangled hierarchy is a hierarchical consciousness system in which a strange loop appears.

Definitions

A strange loop is a hierarchy of levels, each of which is linked to at least one other by some type of relationship. A strange loop hierarchy is "tangled" (Hofstadter refers to this as a "heterarchy"), in that there is no well defined highest or lowest level; moving through the levels, one eventually returns to the starting point, i.e., the original level. Examples of strange loops that Hofstadter offers include: many of the works of M. C. Escher, the Canon 5. a 2 from J.S. Bach's Musical Offering, the information flow network between DNA and enzymes through protein synthesis and DNA replication, and self-referential Gödelian statements in formal systems.

In I Am a Strange Loop , Hofstadter defines strange loops as follows:

And yet when I say "strange loop", I have something else in mind — a less concrete, more elusive notion. What I mean by "strange loop" is — here goes a first stab, anyway — not a physical circuit but an abstract loop in which, in the series of stages that constitute the cycling-around, there is a shift from one level of abstraction (or structure) to another, which feels like an upwards movement in an hierarchy, and yet somehow the successive "upward" shifts turn out to give rise to a closed cycle. That is, despite one's sense of departing ever further from one's origin, one winds up, to one's shock, exactly where one had started out. In short, a strange loop is a paradoxical level-crossing feedback loop. (pp. 101-102)

In cognitive science

According to Hofstadter, strange loops take form in human consciousness as the complexity of active symbols in the brain inevitably leads to the same kind of self-reference which Gödel proved was inherent in any complex logical or arithmetical system in his incompleteness theorem. [1] Gödel showed that mathematics and logic contain strange loops: propositions that not only refer to mathematical and logical truths, but also to the symbol systems expressing those truths. This leads to the sort of paradoxes seen in statements such as "This statement is false," wherein the sentence's basis of truth is found in referring to itself and its assertion, causing a logical paradox. [2]

Hofstadter argues that the psychological self arises out of a similar kind of paradox. We are not born with an "I" – the ego emerges only gradually as experience shapes our dense web of active symbols into a tapestry rich and complex enough to begin twisting back upon itself. According to this view the psychological "I" is a narrative fiction, something created only from intake of symbolic data and its own ability to create stories about itself from that data. The consequence is that a perspective (a mind) is a culmination of a unique pattern of symbolic activity in our nervous systems, which suggests that the pattern of symbolic activity that makes identity, that constitutes subjectivity, can be replicated within the brains of others, and perhaps even in artificial brains. [2]

Strangeness

The "strangeness" of a strange loop comes from our way of perceiving, because we categorize our input in a small number of "symbols" (by which Hofstadter means groups of neurons standing for one thing in the outside world). So the difference between the video-feedback loop and our strange loops, our "I"s, is that while the former converts light to the same pattern on a screen, the latter categorizes a pattern and outputs its essence, so that as we get closer and closer to our essence, we get further down our strange loop. [3]

Downward causality

Hofstadter thinks our minds appear to us to determine the world by way of "downward causality", which refers to a situation where a cause-and-effect relationship in a system gets flipped upside-down. Hofstadter says this happens in the proof of Gödel's incompleteness theorem:

Merely from knowing the formula's meaning, one can infer its truth or falsity without any effort to derive it in the old-fashioned way, which requires one to trudge methodically "upwards" from the axioms. This is not just peculiar; it is astonishing. Normally, one cannot merely look at what a mathematical conjecture says and simply appeal to the content of that statement on its own to deduce whether the statement is true or false. (pp. 169-170)

Hofstadter claims a similar "flipping around of causality" appears to happen in minds possessing self-consciousness. The mind perceives itself as the cause of certain feelings ("I" am the source of my desires), while according to popular scientific models, feelings and desires are strictly caused by the interactions of neurons.

The parallels between downward causation in formal systems and downward causation in brains are explored by Theodor Nenu (2022), together with other aspects of Hofstadter's metaphysics of mind. Nenu also questions the correctness of the above quote by focusing on the sentence which "says about itself" that it is provable (also known as a Henkin-sentence, named after logician Leon Henkin). It turns out that under suitable metamathematical choices (where the Hilbert-Bernays provability conditions do not obtain), one can construct formally undecidable (or even formally refutable) Henkin-sentences for the arithmetical system under investigation. This system might very well be Hofstadter's Typographical Number Theory used in Gödel, Escher, Bach or the more familiar Peano Arithmetic or some other sufficiently rich formal arithmetic. Thus, there are examples of sentences "which say about themselves that they are provable", but they don't exhibit the sort of downward causal powers described in the displayed quote.

Examples

Hofstadter points to Bach's Canon per Tonos, M. C. Escher's drawings Waterfall , Drawing Hands , Ascending and Descending , and the liar paradox as examples that illustrate the idea of strange loops, which is expressed fully in the proof of Gödel's incompleteness theorem.

The "chicken or the egg" paradox is perhaps the best-known strange loop problem.

The "ouroboros", which depicts a dragon eating its own tail, is perhaps one of the most ancient and universal symbolic representations of the reflexive loop concept.

A Shepard tone is another illustrative example of a strange loop. Named after Roger Shepard, it is a sound consisting of a superposition of tones separated by octaves. When played with the base pitch of the tone moving upwards or downwards, it is referred to as the Shepard scale. This creates the auditory illusion of a tone that continually ascends or descends in pitch, yet which ultimately seems to get no higher or lower. In a similar way a sound with seemingly ever increasing tempo can be constructed, as was demonstrated by Jean-Claude Risset.

See also

Related Research Articles

<span class="mw-page-title-main">Douglas Hofstadter</span> American professor of cognitive science (born 1945)

Douglas Richard Hofstadter is an American scholar of cognitive science, physics, and comparative literature whose research includes concepts such as the sense of self in relation to the external world, consciousness, analogy-making, artistic creation, literary translation, and discovery in mathematics and physics. His 1979 book Gödel, Escher, Bach: An Eternal Golden Braid won both the Pulitzer Prize for general nonfiction and a National Book Award for Science. His 2007 book I Am a Strange Loop won the Los Angeles Times Book Prize for Science and Technology.

<span class="mw-page-title-main">Gödel's completeness theorem</span> Fundamental theorem in mathematical logic

Gödel's completeness theorem is a fundamental theorem in mathematical logic that establishes a correspondence between semantic truth and syntactic provability in first-order logic.

Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics.

<span class="mw-page-title-main">Self-reference</span> Sentence, idea or formula that refers to itself

Self-reference is a concept that involves referring to oneself or one's own attributes, characteristics, or actions. It can occur in language, logic, mathematics, philosophy, and other fields.

<i>Gödel, Escher, Bach</i> 1979 book by Douglas Hofstadter

Gödel, Escher, Bach: an Eternal Golden Braid, also known as GEB, is a 1979 book by Douglas Hofstadter.

<span class="mw-page-title-main">Shepard tone</span> Auditory illusion

A Shepard tone, named after Roger Shepard, is a sound consisting of a superposition of sine waves separated by octaves. When played with the bass pitch of the tone moving upward or downward, it is referred to as the Shepard scale. This creates the auditory illusion of a tone that seems to continually ascend or descend in pitch, yet which ultimately gets no higher or lower.

Gödel's incompleteness theorems are two theorems of mathematical logic that are concerned with the limits of provability in formal axiomatic theories. These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics. The theorems are widely, but not universally, interpreted as showing that Hilbert's program to find a complete and consistent set of axioms for all mathematics is impossible.

In mathematics, Hilbert's second problem was posed by David Hilbert in 1900 as one of his 23 problems. It asks for a proof that the arithmetic is consistent – free of any internal contradictions. Hilbert stated that the axioms he considered for arithmetic were the ones given in Hilbert (1900), which include a second order completeness axiom.

<span class="mw-page-title-main">Metamathematics</span> Study of mathematics itself

Metamathematics is the study of mathematics itself using mathematical methods. This study produces metatheories, which are mathematical theories about other mathematical theories. Emphasis on metamathematics owes itself to David Hilbert's attempt to secure the foundations of mathematics in the early part of the 20th century. Metamathematics provides "a rigorous mathematical technique for investigating a great variety of foundation problems for mathematics and logic". An important feature of metamathematics is its emphasis on differentiating between reasoning from inside a system and from outside a system. An informal illustration of this is categorizing the proposition "2+2=4" as belonging to mathematics while categorizing the proposition "'2+2=4' is valid" as belonging to metamathematics.

In mathematical logic, a Gödel numbering is a function that assigns to each symbol and well-formed formula of some formal language a unique natural number, called its Gödel number. The concept was developed by Kurt Gödel for the proof of his incompleteness theorems.

<span class="mw-page-title-main">George Boolos</span> American philosopher and mathematical logician

George Stephen Boolos was an American philosopher and a mathematical logician who taught at the Massachusetts Institute of Technology.

Tarski's undefinability theorem, stated and proved by Alfred Tarski in 1933, is an important limitative result in mathematical logic, the foundations of mathematics, and in formal semantics. Informally, the theorem states that "arithmetical truth cannot be defined in arithmetic".

Quine's paradox is a paradox concerning truth values, stated by Willard Van Orman Quine. It is related to the liar paradox as a problem, and it purports to show that a sentence can be paradoxical even if it is not self-referring and does not use demonstratives or indexicals. The paradox can be expressed as follows:

Meta is a prefix meaning "more comprehensive" or "transcending".

In mathematical logic and philosophy, Skolem's paradox is a seeming contradiction that arises from the downward Löwenheim–Skolem theorem. Thoralf Skolem (1922) was the first to discuss the seemingly contradictory aspects of the theorem, and to discover the relativity of set-theoretic notions now known as non-absoluteness. Although it is not an actual antinomy like Russell's paradox, the result is typically called a paradox and was described as a "paradoxical state of affairs" by Skolem.

<i>Drawing Hands</i> Lithograph by Dutch artist M. C. Escher

Drawing Hands is a lithograph by the Dutch artist M. C. Escher first printed in January 1948. It depicts a sheet of paper, out of which two hands rise, in the paradoxical act of drawing one another into existence. This is one of the most obvious examples of Escher's common use of paradox.

<span class="mw-page-title-main">Egbert B. Gebstadter</span>

Egbert B. Gebstadter is a fictional author who appears in the indexes of books by Douglas R. Hofstadter. For each Hofstadter book, there is a corresponding Gebstadter book. His name is derived from "GEB", the abbreviation for Hofstadter's first book Gödel, Escher, Bach: An Eternal Golden Braid; the letters appear in his last name, permuted in his first name, and permuted again in his initials.

This article gives a sketch of a proof of Gödel's first incompleteness theorem. This theorem applies to any formal theory that satisfies certain technical hypotheses, which are discussed as needed during the sketch. We will assume for the remainder of the article that a fixed theory satisfying these hypotheses has been selected.

<i>I Am a Strange Loop</i> 2007 book by Douglas Hofstadter

I Am a Strange Loop is a 2007 book by Douglas Hofstadter, examining in depth the concept of a strange loop to explain the sense of "I". The concept of a strange loop was originally developed in his 1979 book Gödel, Escher, Bach.

In the end, we are self-perceiving, self-inventing, locked-in mirages that are little miracles of self-reference.

<i>Print Gallery</i> (M. C. Escher) Lithograph printed in 1956 by the Dutch artist M. C. Escher

Print Gallery is a lithograph printed in 1956 by the Dutch artist M. C. Escher. It depicts a man in a gallery viewing a print of a seaport, and among the buildings in the seaport is the very gallery in which he is standing, making use of the Droste effect with visual recursion. The lithograph has attracted discussion in both mathematical and artistic contexts. Escher considered Print Gallery to be among the best of his works.

References

Citations

  1. Johnson, George (March 2007). "A New Journey into Hofstadter's Mind". Scientific American. 296 (3): 98–102. Bibcode:2007SciAm.296c..98J. doi:10.1038/scientificamerican0307-98 . Retrieved 8 October 2011.
  2. 1 2 O'Reilly, Scott (2010). "I Am A Strange Loop by Douglas Hofstadter". Philosophy Now. Retrieved 8 October 2011.
  3. Hofstadter, Douglas (2007). I Am A Strange Loop . ISBN   978-0-465-03078-1.

Sources