Super-logarithm

Last updated

In mathematics, the super-logarithm is one of the two inverse functions of tetration. Just as exponentiation has two inverse functions, roots and logarithms, tetration has two inverse functions, super-roots and super-logarithms. There are several ways of interpreting super-logarithms:

Contents

For positive integer values, the super-logarithm with base- e is equivalent to the number of times a logarithm must be iterated to get to 1 (the Iterated logarithm). However, this is not true for negative values and so cannot be considered a full definition. The precise definition of the super-logarithm depends on a precise definition of non-integer tetration (that is, for y not an integer). There is no clear consensus on the definition of non-integer tetration and so there is likewise no clear consensus on the super-logarithm for non-integer inputs.

Definitions

The super-logarithm, written is defined implicitly by

and

This definition implies that the super-logarithm can only have integer outputs, and that it is only defined for inputs of the form and so on. In order to extend the domain of the super-logarithm from this sparse set to the real numbers, several approaches have been pursued. These usually include a third requirement in addition to those listed above, which vary from author to author. These approaches are as follows:

Approximations

Usually, the special functions are defined not only for the real values of argument(s), but to complex plane, and differential and/or integral representation, as well as expansions in convergent and asymptotic series. Yet, no such representations are available for the slog function. Nevertheless, the simple approximations below are suggested.

Linear approximation

The linear approximation to the super-logarithm is:

which is a piecewise-defined function with a linear "critical piece". This function has the property that it is continuous for all real z ( continuous). The first authors to recognize this approximation were Rubstov and Romerio, although it is not in their paper, it can be found in their algorithm that is used in their software prototype. The linear approximation to tetration, on the other hand, had been known before, for example by Ioannis Galidakis. This is a natural inverse of the linear approximation to tetration.

Authors like Holmes recognize that the super-logarithm would be a great use to the next evolution of computer floating-point arithmetic, but for this purpose, the function need not be infinitely differentiable. Thus, for the purpose of representing large numbers, the linear approximation approach provides enough continuity ( continuity) to ensure that all real numbers can be represented on a super-logarithmic scale.

Quadratic approximation

The quadratic approximation to the super-logarithm is:

which is a piecewise-defined function with a quadratic "critical piece". This function has the property that it is continuous and differentiable for all real z ( continuous). The first author to publish this approximation was Andrew Robbins in this paper.

This version of the super-logarithm allows for basic calculus operations to be performed on the super-logarithm, without requiring a large amount of solving beforehand. Using this method, basic investigation of the properties of the super-logarithm and tetration can be performed with a small amount of computational overhead.

Approaches to the Abel function

The Abel function is any function that satisfies Abel's functional equation:

Given an Abel function another solution can be obtained by adding any constant . Thus given that the super-logarithm is defined by and the third special property that differs between approaches, the Abel function of the exponential function could be uniquely determined.

Properties

Other equations that the super-logarithm satisfies are:

for all real z

Probably the first example of a mathematical problem where the solution is expressed in terms of super-logarithms, is the following:

Consider oriented graphs with N nodes and such that oriented path from node i to node j exists if and only if If length of all such paths is at most k edges, then the minimum possible total number of edges is:
for
for
for
for and
(M. I. Grinchuk, 1986; [1] cases require super-super-logarithms, super-super-super-logarithms etc.)

Super-logarithm as inverse of tetration

f
=
s
l
o
g
e
(
z
)
{\displaystyle f={\rm {slog}}_{\rm {e}}(z)}
in the complex z-plane. Slogez01.jpg
in the complex z-plane.

As tetration (or super-exponential) is suspected to be an analytic function, [2] at least for some values of , the inverse function may also be analytic. Behavior of , defined in such a way, the complex plane is sketched in Figure 1 for the case . Levels of integer values of real and integer values of imaginary parts of the slog functions are shown with thick lines. If the existence and uniqueness of the analytic extension of tetration is provided by the condition of its asymptotic approach to the fixed points and of [3] in the upper and lower parts of the complex plane, then the inverse function should also be unique. Such a function is real at the real axis. It has two branch points at and . It approaches its limiting value in vicinity of the negative part of the real axis (all the strip between the cuts shown with pink lines in the figure), and slowly grows up along the positive direction of the real axis. As the derivative at the real axis is positive, the imaginary part of slog remains positive just above the real axis and negative just below the real axis. The existence, uniqueness and generalizations are under discussion. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Complex number</span> Number with a real and an imaginary part

In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted i, called the imaginary unit and satisfying the equation ; every complex number can be expressed in the form , where a and b are real numbers. Because no real number satisfies the above equation, i was called an imaginary number by René Descartes. For the complex number ,a is called the real part, and b is called the imaginary part. The set of complex numbers is denoted by either of the symbols or C. Despite the historical nomenclature, "imaginary" complex numbers have a mathematical existence as firm as that of the real numbers, and they are fundamental tools in the scientific description of the natural world.

<span class="mw-page-title-main">Euler's formula</span> Complex exponential in terms of sine and cosine

Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that, for any real number x, one has

<span class="texhtml mvar" style="font-style:italic;">e</span> (mathematical constant) Constant value used in mathematics

The number e is a mathematical constant approximately equal to 2.71828 that can be characterized in many ways. It is the base of natural logarithms. It is the limit of (1 + 1/n)n as n approaches infinity, an expression that arises in the computation of compound interest. It can also be calculated as the sum of the infinite series

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,

<span class="mw-page-title-main">Logarithm</span> Mathematical function, inverse of an exponential function

In mathematics, the logarithm is the inverse function to exponentiation. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 103, the logarithm base 10 of 1000 is 3, or log10 (1000) = 3. The logarithm of x to base b is denoted as logb (x), or without parentheses, logbx, or even without the explicit base, log x, when no confusion is possible, or when the base does not matter such as in big O notation.

<span class="mw-page-title-main">Natural logarithm</span> Logarithm to the base of the mathematical constant e

The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718281828459. The natural logarithm of x is generally written as ln x, logex, or sometimes, if the base e is implicit, simply log x. Parentheses are sometimes added for clarity, giving ln(x), loge(x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.

<span class="mw-page-title-main">Exponentiation</span> Arithmetic operation

In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; this is pronounced as "b (raised) to the n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases:

<span class="mw-page-title-main">Stirling's approximation</span> Approximation for factorials

In mathematics, Stirling's approximation is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of . It is named after James Stirling, though a related but less precise result was first stated by Abraham de Moivre.

<span class="mw-page-title-main">Gamma distribution</span> Probability distribution

In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use:

  1. With a shape parameter k and a scale parameter θ
  2. With a shape parameter and an inverse scale parameter , called a rate parameter.
<span class="mw-page-title-main">Tetration</span> Arithmetic operation

In mathematics, tetration is an operation based on iterated, or repeated, exponentiation. There is no standard notation for tetration, though and the left-exponent xb are common.

In mathematics, a principal branch is a function which selects one branch ("slice") of a multi-valued function. Most often, this applies to functions defined on the complex plane.

<span class="mw-page-title-main">Iterated logarithm</span> Inverse function to a tower of powers

In computer science, the iterated logarithm of , written log* , is the number of times the logarithm function must be iteratively applied before the result is less than or equal to . The simplest formal definition is the result of this recurrence relation:

<span class="mw-page-title-main">Iterated function</span> Result of repeatedly applying a mathematical function

In mathematics, an iterated function is a function that is obtained by composing another function with itself two or several times. The process of repeatedly applying the same function is called iteration. In this process, starting from some initial object, the result of applying a given function is fed again into the function as input, and this process is repeated.

In mathematics, a logarithm of a matrix is another matrix such that the matrix exponential of the latter matrix equals the original matrix. It is thus a generalization of the scalar logarithm and in some sense an inverse function of the matrix exponential. Not all matrices have a logarithm and those matrices that do have a logarithm may have more than one logarithm. The study of logarithms of matrices leads to Lie theory since when a matrix has a logarithm then it is in an element of a Lie group and the logarithm is the corresponding element of the vector space of the Lie algebra.

<span class="mw-page-title-main">Complex logarithm</span> Logarithm of a complex number

In mathematics, a complex logarithm is a generalization of the natural logarithm to nonzero complex numbers. The term refers to one of the following, which are strongly related:

<span class="mw-page-title-main">Double exponential function</span> Exponential function of an exponential function

A double exponential function is a constant raised to the power of an exponential function. The general formula is (where a>1 and b>1), which grows much more quickly than an exponential function. For example, if a = b = 10:

In mathematics, superfunction is a nonstandard name for an iterated function for complexified continuous iteration index. Roughly, for some function f and for some variable x, the superfunction could be defined by the expression

In mathematics, the set of positive real numbers, is the subset of those real numbers that are greater than zero. The non-negative real numbers, also include zero. Although the symbols and are ambiguously used for either of these, the notation or for and or for has also been widely employed, is aligned with the practice in algebra of denoting the exclusion of the zero element with a star, and should be understandable to most practicing mathematicians.

In mathematics, a transformation of a sequence's generating function provides a method of converting the generating function for one sequence into a generating function enumerating another. These transformations typically involve integral formulas applied to a sequence generating function or weighted sums over the higher-order derivatives of these functions.

References

  1. М. И. Гринчук, О сложности реализации последовательности треугольных булевых матриц вентильными схемами различной глубины, in: Методы дискретного анализа в синтезе управляющих систем, 44 (1986), pp. 3—23.
  2. Peter Walker (1991). "Infinitely Differentiable Generalized Logarithmic and Exponential Functions". Mathematics of Computation . American Mathematical Society. 57 (196): 723–733. doi: 10.2307/2938713 . JSTOR   2938713.
  3. H.Kneser (1950). "Reelle analytische Losungen der Gleichung und verwandter Funktionalgleichungen". Journal für die reine und angewandte Mathematik . 187: 56–67. doi:10.1515/crll.1950.187.56. S2CID   118114436.
  4. Tetration forum, http://math.eretrandre.org/tetrationforum/index.php