Supermetric

Last updated

Supermetric is a mathematical concept used in a number of fields in physics. [1]

Contents

See also

Related Research Articles

General relativity Einsteins theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of partial differential equations.

Quantization (physics)

In physics, quantization is the process of transition from a classical understanding of physical phenomena to a newer understanding known as quantum mechanics. It is a procedure for constructing a quantum field theory starting from a classical field theory. This is a generalization of the procedure for building quantum mechanics from classical mechanics. Also related is field quantization, as in the "quantization of the electromagnetic field", referring to photons as field "quanta". This procedure is basic to theories of particle physics, nuclear physics, condensed matter physics, and quantum optics.

Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics, and where quantum effects cannot be ignored, such as in the vicinity of black holes or similar compact astrophysical objects where the effects of gravity are strong, such as neutron stars.

Doubly special relativity (DSR) – also called deformed special relativity or, by some, extra-special relativity – is a modified theory of special relativity in which there is not only an observer-independent maximum velocity, but also, an observer-independent maximum energy scale and/or a minimum length scale. This contrasts with other Lorentz-violating theories, such as the Standard-Model Extension, where Lorentz invariance is instead broken by the presence of a preferred frame. The main motivation for this theory is that the Planck energy should be the scale where as yet unknown quantum gravity effects become important and, due to invariance of physical laws, this scale should remain fixed in all inertial frames.

Noncommutative geometry (NCG) is a branch of mathematics concerned with a geometric approach to noncommutative algebras, and with the construction of spaces that are locally presented by noncommutative algebras of functions. A noncommutative algebra is an associative algebra in which the multiplication is not commutative, that is, for which does not always equal ; or more generally an algebraic structure in which one of the principal binary operations is not commutative; one also allows additional structures, e.g. topology or norm, to be possibly carried by the noncommutative algebra of functions.

The axion is a hypothetical elementary particle postulated by the Peccei–Quinn theory in 1977 to resolve the strong CP problem in quantum chromodynamics (QCD). If axions exist and have low mass within a specific range, they are of interest as a possible component of cold dark matter.

In particle physics, the hypothetical dilaton particle is a particle of a scalar field that appears in theories with extra dimensions when the volume of the compactified dimensions varies. It appears as a radion in Kaluza–Klein theory's compactifications of extra dimensions. In Brans–Dicke theory of gravity, Newton's constant is not presumed to be constant but instead 1/G is replaced by a scalar field and the associated particle is the dilaton.

Nima Arkani-Hamed American-Canadian physicist

Nima Arkani-Hamed is an Iranian-American-Canadian theoretical physicist, with interests in high-energy physics, quantum field theory, string theory, cosmology and collider physics. Arkani-Hamed is a member of the permanent faculty at the Institute for Advanced Study in Princeton, New Jersey. He is also director of The Center for Future High Energy Physics (CFHEP) in Beijing, China.

Mott insulator Materials classically predicted to be conductors, that are actually insulators

Mott insulators are a class of materials that should conduct electricity under conventional band theories, but are in fact insulators when measured. This effect is due to electron–electron interactions, which are not considered in conventional band theory.

In mathematical physics, covariant classical field theory represents classical fields by sections of fiber bundles, and their dynamics is phrased in the context of a finite-dimensional space of fields. Nowadays, it is well known that jet bundles and the variational bicomplex are the correct domain for such a description. The Hamiltonian variant of covariant classical field theory is the covariant Hamiltonian field theory where momenta correspond to derivatives of field variables with respect to all world coordinates. Non-autonomous mechanics is formulated as covariant classical field theory on fiber bundles over the time axis ℝ.

In theoretical particle physics, the non-commutative Standard Model, is a model based on noncommutative geometry that unifies a modified form of general relativity with the Standard Model.

In mathematics and theoretical physics, Noether's second theorem relates symmetries of an action functional with a system of differential equations. The action S of a physical system is an integral of a so-called Lagrangian function L, from which the system's behavior can be determined by the principle of least action.

In mathematical physics, de Sitter invariant special relativity is the speculative idea that the fundamental symmetry group of spacetime is the indefinite orthogonal group SO(4,1), that of de Sitter space. In the standard theory of general relativity, de Sitter space is a highly symmetrical special vacuum solution, which requires a cosmological constant or the stress–energy of a constant scalar field to sustain.

In quantum field theory, gauge gravitation theory is the effort to extend Yang–Mills theory, which provides a universal description of the fundamental interactions, to describe gravity. It should not be confused with gauge theory gravity, which is a formulation of (classical) gravitation in the language of geometric algebra. Nor should it be confused with Kaluza–Klein theory, where the gauge fields are used to describe particle fields, and not gravity itself.

Gennadi Sardanashvily was a theoretical physicist, a principal research scientist of Moscow State University.

Supergeometry is differential geometry of modules over graded commutative algebras, supermanifolds and graded manifolds. Supergeometry is part and parcel of many classical and quantum field theories involving odd fields, e.g., SUSY field theory, BRST theory, or supergravity.

In mathematics, a Lagrangian system is a pair (Y, L), consisting of a smooth fiber bundle YX and a Lagrangian density L, which yields the Euler–Lagrange differential operator acting on sections of YX.

In mathematics, any Lagrangian system generally admits gauge symmetries, though it may happen that they are trivial. In theoretical physics, the notion of gauge symmetries depending on parameter functions is a cornerstone of contemporary field theory.

Geometry of quantum systems is mainly phrased in algebraic terms of modules and algebras. Connections on modules are generalization of a linear connection on a smooth vector bundle written as a Koszul connection on the -module of sections of .

In theoretical physics, a mass generation mechanism is a theory that describes the origin of mass from the most fundamental laws of physics. Physicists have proposed a number of models that advocate different views of the origin of mass. The problem is complicated because the primary role of mass is to mediate gravitational interaction between bodies, and no theory of gravitational interaction reconciles with the currently popular Standard Model of particle physics.

References

  1. Connor, Richard; Vadicamo, Lucia; Cardillo, Franco Alberto; Rabitti, Fausto (1 February 2019). "Supermetric search" (PDF). Information Systems. 80: 108–123. doi:10.1016/j.is.2018.01.002. S2CID   6020257.

Further reading