Surface integrity

Last updated

Surface integrity is the surface condition of a workpiece after being modified by a manufacturing process. The term was coined by Michael Field [1] and John F. Kahles [2] in 1964. [3]

Manufacturing industrial activity producing goods for sale using labor and machines

Manufacturing is the production of merchandise for use or sale using labour and machines, tools, chemical and biological processing, or formulation. The term may refer to a range of human activity, from handicraft to high tech, but is most commonly applied to industrial design, in which raw materials are transformed into finished goods on a large scale. Such finished goods may be sold to other manufacturers for the production of other, more complex products, such as aircraft, household appliances, furniture, sports equipment or automobiles, or sold to wholesalers, who in turn sell them to retailers, who then sell them to end users and consumers.

Contents

The surface integrity of a workpiece or item changes the material's properties. The consequences of changes to surface integrity are a mechanical engineering design problem, but the preservation of those properties are a manufacturing consideration. [4]

Mechanical engineering discipline of engineering

Mechanical engineering is the discipline that applies engineering, physics, engineering mathematics, and materials science principles to design, analyze, manufacture, and maintain mechanical systems. It is one of the oldest and broadest of the engineering disciplines.

Surface integrity can have a great impact on a parts function; for example, Inconel 718 can have a fatigue limit as high as 540 MPa (78,000 psi) after a gentle grinding or as low as 150 MPa (22,000 psi) after electrical discharge machining (EDM). [5]

Inconel trademark of nickel based superalloys

Inconel is a family of austenitic nickel-chromium-based superalloys.

Fatigue limit

Fatigue limit, endurance limit, and fatigue strength are all expressions used to describe a property of materials: the amplitude of cyclic stress that can be applied to the material without causing fatigue failure. Ferrous alloys and titanium alloys have a distinct limit, called the endurance limit, which is the amplitude of completely reversed bending stress below which there appears to be no number of cycles that will cause failure. Other structural metals such as aluminium and copper do not have a distinct limit and will eventually fail even from small stress amplitudes. In these cases, the term endurance strength is used. Endurance strength is defined as the maximum value of completely reversed bending stress that a material can withstand for a finite number of cycles without a fatigue failure.

Grinding (abrasive cutting) abrasive machining process that uses a grinding wheel as the cutting tool


Grinding is an abrasive machining process that uses a grinding wheel as the cutting tool.

Definition

There are two aspects to surface integrity: topography characteristics and surface layer characteristics. The topography is made up of surface roughness, waviness, errors of form, and flaws. The surface layer characteristics that can change through processing are: plastic deformation, residual stresses, cracks, hardness, overaging, phase changes, recrystallization, intergranular attack, and hydrogen embrittlement. When a traditional manufacturing process is used, such as machining, the surface layer sustains local plastic deformation. [3] [4]

Surface roughness component of surface texture

Surface roughness often shortened to roughness, is a component of surface texture. It is quantified by the deviations in the direction of the normal vector of a real surface from its ideal form. If these deviations are large, the surface is rough; if they are small, the surface is smooth. In surface metrology, roughness is typically considered to be the high-frequency, short-wavelength component of a measured surface. However, in practice it is often necessary to know both the amplitude and frequency to ensure that a surface is fit for a purpose.

Waviness is the measurement of the more widely spaced component of surface texture. It is a broader view of roughness because it is more strictly defined as "the irregularities whose spacing is greater than the roughness sampling length". It can occur from machine or work deflections, chatter, residual stress, vibrations, or heat treatment. Waviness should also be distinguished from flatness, both by its shorter spacing and its characteristic of being typically periodic in nature.

Residual stress

Residual stresses are stresses that remain in a solid material after the original cause of the stresses has been removed. Residual stress may be desirable or undesirable. For example, laser peening imparts deep beneficial compressive residual stresses into metal components such as turbine engine fan blades, and it is used in toughened glass to allow for large, thin, crack- and scratch-resistant glass displays on smartphones. However, unintended residual stress in a designed structure may cause it to fail prematurely.

The processes that affect surface integrity can be conveniently broken up into three classes: traditional processes, non-traditional processes, and finishing treatments. Traditional processes are defined as processes where the tool contacts the workpiece surface; for example: grinding, turning, and machining. These processes will only damage the surface integrity if the improper parameters are used, such as dull tools, too high feed speeds, improper coolant or lubrication, or incorrect grinding wheel hardness. Nontraditional processes are defined as processes where the tool does not contact the workpiece; examples of this type of process include EDM, electrochemical machining, and chemical milling. These processes will produce different surface integrity depending on how the processes are controlled; for instance, they can leave a stress-free surface, a remelted surface, or excessive surface roughness. Finishing treatments are defined as processes that negate surface finishes imparted by traditional and non-traditional processes or improve the surface integrity. For example, compressive residual stress can be enhanced via peening or roller burnishing or the recast layer left by EDMing can be removed via chemical milling. [6]

Turning machining technique acting on rotated objects

Turning is a machining process in which a cutting tool, typically a non-rotary tool bit, describes a helix toolpath by moving more or less linearly while the workpiece rotates. The tool's axes of movement may be literally a straight line, or they may be along some set of curves or angles, but they are essentially linear. Usually the term "turning" is reserved for the generation of external surfaces by this cutting action, whereas this same essential cutting action when applied to internal surfaces is called "boring". Thus the phrase "turning and boring" categorizes the larger family of processes known as lathing. The cutting of faces on the workpiece, whether with a turning or boring tool, is called "facing", and may be lumped into either category as a subset.

Electrochemical machining

Electrochemical machining (ECM) is a method of removing metal by an electrochemical process. It is normally used for mass production and is used for working extremely hard materials or materials that are difficult to machine using conventional methods. Its use is limited to electrically conductive materials. ECM can cut small or odd-shaped angles, intricate contours or cavities in hard and exotic metals, such as titanium aluminides, Inconel, Waspaloy, and high nickel, cobalt, and rhenium alloys. Both external and internal geometries can be machined.

Peening

Peening is the process of working a metal's surface to improve its material properties, usually by mechanical means, such as hammer blows, by blasting with shot or blasts of light beams with laser peening. Peening is normally a cold work process, with laser peening being a notable exception. It tends to expand the surface of the cold metal, thereby inducing compressive stresses or relieving tensile stresses already present. Peening can also encourage strain hardening of the surface metal.

Finishing treatments can affect the workpiece surface in a wide variety of manners. Some clean and/or remove defects, such as scratches, pores, burrs, flash, or blemishes. Other processes improve or modify the surface appearance by improving smoothness, texture, or color. They can also improve corrosion resistance, wear resistance, and/or reduce friction. Coatings are another type of finishing treatment that may be used to plate an expensive or scarce material onto a less expensive base material. [6]

Flash (manufacturing) excess material attached to a molded, forged, or cast product

Flash, also known as flashing, is excess material attached to a molded, forged, or cast product, which must usually be removed. This is typically caused by leakage of the material between the two surfaces of a mold or between the base material and the mold. Molding flash is seen when the optimized parameter on cull height is not calibrated. Proper design of mold parting surfaces can reduce or eliminate flash.

Wear mechanical process, is related to interactions between surfaces and specifically the removal and deformation of material on a surface as a result of mechanical action of the opposite surface

Wear is the damaging, gradual removal or deformation of material at solid surfaces. Causes of wear can be mechanical or chemical. The study of wear and related processes is referred to as tribology.

Friction force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other

Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction:

Variables

Manufacturing processes have five main variables: the workpiece, the tool, the machine tool, the environment, and process variables. All of these variables can affect the surface integrity of the workpiece by producing: [3]

Related Research Articles

Electrical discharge machining

Electrical discharge machining (EDM), also known as spark machining, spark eroding, burning, die sinking, wire burning or wire erosion, is a manufacturing process whereby a desired shape is obtained by using electrical discharges (sparks). Material is removed from the work piece by a series of rapidly recurring current discharges between two electrodes, separated by a dielectric liquid and subject to an electric voltage. One of the electrodes is called the tool-electrode, or simply the "tool" or "electrode," while the other is called the workpiece-electrode, or "work piece." The process depends upon the tool and work piece not making actual contact.

Forging manufacturing process involving the shaping of metal

Forging is a manufacturing process involving the shaping of metal using localized compressive forces. The blows are delivered with a hammer or a die. Forging is often classified according to the temperature at which it is performed: cold forging, warm forging, or hot forging. For the latter two, the metal is heated, usually in a forge. Forged parts can range in weight from less than a kilogram to hundreds of metric tons. Forging has been done by smiths for millennia; the traditional products were kitchenware, hardware, hand tools, edged weapons, cymbals, and jewellery. Since the Industrial Revolution, forged parts are widely used in mechanisms and machines wherever a component requires high strength; such forgings usually require further processing to achieve a finished part. Today, forging is a major worldwide industry.

Broaching is a machining process that uses a toothed tool, called a broach, to remove material. There are two main types of broaching: linear and rotary. In linear broaching, which is the more common process, the broach is run linearly against a surface of the workpiece to effect the cut. Linear broaches are used in a broaching machine, which is also sometimes shortened to broach. In rotary broaching, the broach is rotated and pressed into the workpiece to cut an axisymmetric shape. A rotary broach is used in a lathe or screw machine. In both processes the cut is performed in one pass of the broach, which makes it very efficient.

Grinding machine power tool or machine tool used for grinding, which is a type of machining using an abrasive wheel as the cutting tool; mechanical hardware for grinding

A grinding machine, often shortened to grinder, is any of various power tools or machine tools used for grinding, which is a type of machining using an abrasive wheel as the cutting tool. Each grain of abrasive on the wheel's surface cuts a small chip from the workpiece via shear deformation.

Work hardening strengthening of a metal by plastic deformation

Work hardening, also known as strain hardening, is the strengthening of a metal or polymer by plastic deformation. This strengthening occurs because of dislocation movements and dislocation generation within the crystal structure of the material. Many non-brittle metals with a reasonably high melting point as well as several polymers can be strengthened in this fashion. Alloys not amenable to heat treatment, including low-carbon steel, are often work-hardened. Some materials cannot be work-hardened at low temperatures, such as indium, however others can only be strengthened via work hardening, such as pure copper and aluminum.

Shot peening cold metal working process

Shot peening is a cold working process used to produce a compressive residual stress layer and modify mechanical properties of metals and composites. It entails impacting a surface with shot with force sufficient to create plastic deformation.

Drawing (manufacturing) metalworking process

Drawing is a metalworking process which uses tensile forces to stretch metal or glass. As the metal is drawn (pulled), it stretches thinner, into a desired shape and thickness. Drawing is classified in two types: sheet metal drawing and wire, bar, and tube drawing. The specific definition for sheet metal drawing is that it involves plastic deformation over a curved axis. For wire, bar, and tube drawing the starting stock is drawn through a die to reduce its diameter and increase its length. Drawing is usually done at room temperature, thus classified a cold working process, however it may be performed at elevated temperatures to hot work large wires, rods or hollow sections in order to reduce forces.

Surface finishing is a broad range of industrial processes that alter the surface of a manufactured item to achieve a certain property. Finishing processes may be employed to: improve appearance, adhesion or wettability, solderability, corrosion resistance, tarnish resistance, chemical resistance, wear resistance, hardness, modify electrical conductivity, remove burrs and other surface flaws, and control the surface friction. In limited cases some of these techniques can be used to restore original dimensions to salvage or repair an item. An unfinished surface is often called mill finish.

Rolling (metalworking) metalworking process

In metalworking, rolling is a metal forming process in which metal stock is passed through one or more pairs of rolls to reduce the thickness and to make the thickness uniform. The concept is similar to the rolling of dough. Rolling is classified according to the temperature of the metal rolled. If the temperature of the metal is above its recrystallization temperature, then the process is known as hot rolling. If the temperature of the metal is below its recrystallization temperature, the process is known as cold rolling. In terms of usage, hot rolling processes more tonnage than any other manufacturing process, and cold rolling processes the most tonnage out of all cold working processes. Roll stands holding pairs of rolls are grouped together into rolling mills that can quickly process metal, typically steel, into products such as structural steel, bar stock, and rails. Most steel mills have rolling mill divisions that convert the semi-finished casting products into finished products.

Surface finish, also known as surface texture or surface topography, is the nature of a surface as defined by the three characteristics of lay, surface roughness, and waviness. It comprises the small, local deviations of a surface from the perfectly flat ideal.

Investment casting metal-forming based on lost-wax casting

Investment casting is an industrial process based on lost-wax casting, one of the oldest known metal-forming techniques. The term "lost-wax casting" can also refer to modern investment casting processes.

A cryogenic treatment is the process of treating workpieces to cryogenic temperatures in order to remove residual stresses and improve wear resistance on steels. In addition to seeking enhanced stress relief and stabilization, or wear resistance, cryogenic treatment is also sought for its ability to improve corrosion resistance by precipitating micro-fine eta carbides, which can be measured before and after in a part using a quantimet.

Burnishing (metal)

Burnishing is the plastic deformation of a surface due to sliding contact with another object. Visually, burnishing smoothens the texture of a rough surface and makes it shinier. Burnishing may occur on any sliding surface if the contact stress locally exceeds the yield strength of the material.

Hot working

Hot working process metals are plastically deformed above their recrystallization temperature. Being above the recrystallization temperature allows the material to recrystallize during deformation. This is important because recrystallization keeps the materials from strain hardening, which ultimately keeps the yield strength and hardness low and ductility high. This contrasts with cold working.

Shearing, also known as die cutting, is a process which cuts stock without the formation of chips or the use of burning or melting. Strictly speaking, if the cutting blades are straight the process is called shearing; if the cutting blades are curved then they are shearing-type operations. The most commonly sheared materials are in the form of sheet metal or plates, however rods can also be sheared. Shearing-type operations include: blanking, piercing, roll slitting, and trimming. It is used in metalworking and also with paper and plastics.

Superplastic forming (SPF) is an industrial process used for creating precise and complex components out of certain types of materials called superplastic materials.

Spotface

A spotface or spot face is a machined feature in which a certain region of the workpiece is faced, providing a smooth, flat, accurately located surface. This is especially relevant on workpieces cast or forged, where the spotface's smooth, flat, accurately located surface stands in distinction to the surrounding surface whose roughness, flatness, and location are subject to wider tolerances and thus not assured with a machining level of precision. The most common application of spotfacing is facing the area around a bolt hole where the bolt's head will sit, which is often done by cutting a shallow counterbore, just deep enough "to clean up"—that is, only enough material is removed to get down past any irregularity and thus make the surface flat. Other common applications of spotfacing involve facing a pad onto a boss, creating planar surfaces in known locations that can orient a casting or forging into position in the assembly; allow part marking such as stamping or nameplate riveting; or offer machine-finish visual appeal in spots, without the need for finishing all over (FAO).

Mass finishing is a group of manufacturing processes that allow large quantities of parts to be simultaneously finished. The goal of this type of finishing is to burnish, deburr, clean, radius, de-flash, descale, remove rust, polish, brighten, surface harden, prepare parts for further finishing, or break off die cast runners. The two main types of mass finishing are tumble finishing, also known as barrel finishing, and vibratory finishing. Both involve the use of a cyclical action to create grinding contact between surfaces. Sometimes the workpieces are finished against each other; however, usually a finishing medium is used. Mass finishing can be performed dry or wet; wet processes have liquid lubricants, cleaners, or abrasives, while dry processes do not. Cycle times can be as short as 10 minutes for nonferrous workpieces or as long as 2 hours for hardened steel.

Threading is the process of creating a screw thread for screwing the nut and bolt. More screw threads are produced each year than any other machine element. There are many methods of generating threads, including subtractive methods ; deformative or transformative methods ; additive methods ; or combinations thereof.

References

  1. Dr. Michael Field , retrieved 2009-08-28
  2. Field, Michael, John F. Kahles , retrieved 2009-08-28
  3. 1 2 3 Degarmo, Black & Kohser 2003 , p. 778.
  4. 1 2 Degarmo, Black & Kohser 2003 , p. 779.
  5. Degarmo, Black & Kohser 2003 , p. 777.
  6. 1 2 Degarmo, Black & Kohser 2003 , p. 780.

Bibliography