Sydney Coordinated Adaptive Traffic System

Last updated

The Sydney Coordinated Adaptive Traffic System, abbreviated SCATS, is an intelligent transportation system that manages the dynamic (on-line, real-time) timing of signal phases at traffic signals, meaning that it tries to find the best phasing (i.e. cycle times, phase splits and offsets) for a traffic situation (for individual intersections as well as for the whole network). SCATS is based on the automatic plan selection from a library in response to the data derived from loop detectors or other road traffic sensors.

Contents

SCATS uses sensors at each traffic signal to detect vehicle presence in each lane and pedestrians waiting to cross at the local site. The vehicle sensors are generally inductive loops installed within the road pavement. These are unable to detect bicycles. The pedestrian sensors are usually push buttons. Various other types of sensors can be used for vehicle presence detection, provided that a similar and consistent output is achieved. Information collected from the vehicle sensors allows SCATS to calculate and adapt the timing of traffic signals in the network.

SCATS is installed at about 55,000 intersections in over 180 cities in 28 countries. In Australia, where the system was first developed, the majority of signalised intersections are SCATS operated (around 11,000).

The SCATS system is owned by the Australian state of New South Wales, whose state capital is Sydney. In December 2019, Transport for NSW, the transport and road agency in New South Wales, began to look into commercialising the SCATS system. [1]

Features

Default operation

The architecture of SCATS is at two basic levels, LOCAL and MASTER. The LOCAL is the control cabinet at the roadside, which provides the normal signal control as well as processing of traffic information deduced from the vehicle detectors. The MASTER is a remote computer which provides area based traffic control, i.e. area traffic control (ATC) or urban traffic control (UTC). Detailed traffic signal and hardware diagnostics are passed from the LOCAL to the MASTER, with the ability to notify staff when a traffic signal has a fault.

SCATS is able to operate over PAPL, ADSL, PSTN and 3G IP network connections to each intersection. SCATS can also operate on a network of private cables not requiring third party telecommunications support and large parts of inner Sydney have always operated this way.

Priority levels

Public vehicle priority in SCATS (using data provided from PTIPS) caters for both buses and trams. SCATS has a facility to provide three levels of priority:

Trams would normally be given high priority, the aim of which is to get the tram through without it stopping. Buses would normally expect to receive a medium level of priority.

Instant fault detection and quick repair

The ATC system is equipped with the function of fault detection and logging the fault detected in order to facilitate repair and maintenance. Should there be a telecommunication breakdown, the ATC junction controller concerned will switch to standalone mode and continue to function.

Traffic Adaptive Operation

ATC systems provide advanced method of traffic signal control called Traffic Adaptive Control where the operational timing plans including cycle length, splits and offsets are continuously reviewed and modified in small increment, almost on a cycle-by-cycle basis, to match with the prevailing demand measured by the detectors connected to the on-street traffic controllers.

SCATS Ramp Metering System

The SCATS Ramp Metering System (SRMS) [2] is a SCATS subsystem and controls traffic signals at the entries of motorways and integrates with SCATS intersection control for promoting integrated real-time management of the traffic corridor as a whole. The objective of SRMS, based on current traffic conditions, is to efficiently determine:

SRMS achieves these objectives by implementing a collection of pre-configured adaptive intelligent strategies either automatically or manually. In manual mode, the SRMS operator can create new or manipulate existing rules in order to adjust the ramp metering system for effective operation during any planned or unplanned events (e.g. incidents). SRMS is a distributed control system that operates on a central control server and road-side traffic controllers. The central control server is a component of SCATS and inherently provide integrated motorway and arterial real-time management. The road-side controllers are installed on motorway on-ramps and are used to:

Metering rates are determined by the local traffic signal controller or by the central control server. Metering rates can be determined in two ways:

The adaptive operation optimises mainline traffic state by using real-time data from vehicle detector stations installed at several mainline locations, ramps and optionally at arterial roads. The adaptive operation determines control actions at 10 seconds intervals and applies some or all of the following strategies simultaneously:

SRMS is currently used as the Auckland ramp metering system.

Simulation

SCATS can be simulated in-the-loop (SCATSIM) using third party traffic simulation tools. SCATSIM offers an interface supported by Aimsun, PTV VISSIM, Quadstone Paramics and Commuter. SCATSIM offers kerb-side hardware and firmware emulation that interfaces seamless to the SCATS Region and Central Manager offering the same control strategies used in field deployments for both intersections and ramp metering (SRMS). The configuration files prepared by authorities for the Central Manager, Region, SRMS and kerb-side controllers can be re-used without modification by SCATSIM.

When Commuter software was acquired by Autodesk, [3] Azalient Ltd support for the Commuter interface was deprecated. Azalient Ltd also developed a plugin that enabled the Quadstone Paramics interface to SCATSIM. This plugin is also deprecated.

History

SCATS was developed in Sydney, Australia by the New South Wales Department of Main Roads (a predecessor of Transport for NSW) in the 1970s. It began to be used in Melbourne in 1982, [4] Adelaide, South Australia in 1982 and Western Australia in 1983. [5]

It is also used in New Zealand, Hong Kong, Shanghai, Guangzhou, Amman, Tehran, Dublin, Rzeszów, Gdynia, Central New Jersey, [6] and in part of Metro Atlanta, [7] among several other places. In Hong Kong, SCATS is currently adopted in the area traffic control systems at Hong Kong Island, Kowloon, Tsuen Wan and Shatin.

The system may be referred to by an alternative name in a specific installation. However, since deployment outside Australia, New Zealand and Singapore, localised names do not appear to be commonly used. The following are some local alternative names that have been or are in use:

SCATS is a recognised worldwide market leader in intelligent transport systems. Transport for NSW is continuing to develop SCATS to meet emerging technological, user and traffic demands.

See also

Other Intelligent Transportation Systems include:

Related Research Articles

<span class="mw-page-title-main">Traffic</span> Phenomenon of movement by humans on foot or using vehicles

Traffic comprises pedestrians, vehicles, ridden or herded animals, trains, and other conveyances that use public ways (roads/sidewalks) for travel and transportation.

<span class="mw-page-title-main">Intelligent transportation system</span> Advanced application

An intelligent transportation system (ITS) is an advanced application which aims to provide innovative services relating to different modes of transport and traffic management and enable users to be better informed and make safer, more coordinated, and 'smarter' use of transport networks.

<span class="mw-page-title-main">Ramp meter</span> Traffic management system

A ramp meter, ramp signal, or metering light is a device, usually a basic traffic light or a two-section signal light together with a signal controller, that regulates the flow of traffic entering freeways according to current traffic conditions. Ramp meters are used at freeway on-ramps to manage the rate of automobiles entering the freeway. Ramp metering systems have proved to be successful in decreasing traffic congestion and improving driver safety.

<span class="mw-page-title-main">Traffic light</span> Signaling device to control competing flows of traffic

Traffic lights, traffic signals, or stoplights – also known as robots in South Africa and Namibia – are signaling devices positioned at road intersections, pedestrian crossings, and other locations in order to control the flow of traffic.

<span class="mw-page-title-main">Traffic engineering (transportation)</span>

Traffic engineering is a branch of civil engineering that uses engineering techniques to achieve the safe and efficient movement of people and goods on roadways. It focuses mainly on research for safe and efficient traffic flow, such as road geometry, sidewalks and crosswalks, cycling infrastructure, traffic signs, road surface markings and traffic lights. Traffic engineering deals with the functional part of transportation system, except the infrastructures provided.

Signal timing is the technique which traffic engineers use to distribute right-of-way at a signalized intersection. The process includes selecting appropriate values for timing, which are implemented in specialized traffic signal controllers. Signal timing involves deciding how much green time the traffic signal provides an intersection by movement or approach, how long the pedestrian WALK signal should be, whether trains or buses should be prioritized, and numerous other factors.

Brisbane Linked Intersection Signal System or BLISS was Brisbane City Council's ITS infrastructure platform. This system incorporates large scale Traffic Signal control, a Real Time Passenger Information System (RAPID), and other infrastructure for managing and monitoring the road network for the Greater Brisbane Area.

Traffic signal preemption is a system that allows an operator to override the normal operation of traffic lights. The most common use of these systems manipulates traffic signals in the path of an emergency vehicle, halting conflicting traffic and allowing the emergency vehicle right-of-way, thereby reducing response times and enhancing traffic safety. Signal preemption can also be used on tram, light-rail and bus rapid transit systems, to allow public transportation priority access through intersections, and by railroad systems at crossings to prevent collisions.

<span class="mw-page-title-main">Variations in traffic light operation</span>

In traffic engineering, there are regional and national variations in traffic light operation. This may be in the standard traffic light sequence or by the use of special signals.

STREAMS Integrated Intelligent Transport System is an enterprise traffic management system designed to operate in the Microsoft Windows environment. Like most traffic management systems, STREAMS is an array of institutional, human, hardware, and software components designed to monitor, control, and manage traffic on streets and highways. Advanced traffic management systems come under the banner of ITS. ITS is the application of information and communications technology to transport operations in order to "reduce operating costs", "improve safety" and "maximize the capacity of existing infrastructure". STREAMS provides traffic signal management, incident management, motorway management, vehicle priority, traveler information, flood monitoring and parking guidance within a single integrated system is what the product says. STREAMS is developed by Transmax.

<span class="mw-page-title-main">Bus priority signal</span> Faster mass transit at intersections

Bus priority or transit signal priority (TSP) is a name for various techniques to improve service and reduce delay for mass transit vehicles at intersections controlled by traffic signals. TSP techniques are most commonly associated with buses, but can also be used along tram/streetcar or light rail lines, especially those that mix with or conflict with general vehicular traffic.

Selective vehicle detection was the name of a bus priority system used by London Buses to allow traffic signals to selectively favour buses' movement through intersection by changing traffic light sequences and timings as buses approach.

The National Transportation Communications for Intelligent Transportation System Protocol (NTCIP) is a family of standards designed to achieve interoperability and interchangeability between computers and electronic traffic control equipment from different manufacturers.

<span class="mw-page-title-main">Active traffic management</span> Various methods of smoothing traffic flows on busy motorways

Active traffic management is a method of increasing peak capacity and smoothing traffic flows on busy major highways. Techniques include variable speed limits, hard-shoulder running and ramp-metering controlled by overhead variable message signs. It has been implemented in several countries, including Germany, the United Kingdom, Canada and the United States.

<span class="mw-page-title-main">Mounts Bay Road</span> Road in Perth, Western Australia

Mounts Bay Road is a major road in Perth, Western Australia, extending southwest from the central business district along the north bank of the Swan River, at the base of Kings Park.

Traffic optimization is the methods by which time stopped in road traffic is reduced.

<span class="mw-page-title-main">PTV Vissim</span>

PTV Vissim is a microscopic multi-modal traffic flow simulation software package developed by PTV Planung Transport Verkehr AG in Karlsruhe, Germany. It was first developed in 1992. The name is derived from "Verkehr In Städten - SIMulationsmodell".

<span class="mw-page-title-main">Traffic light control and coordination</span>

The normal function of traffic lights requires more than sight control and coordination to ensure that traffic and pedestrians move as smoothly, and safely as possible. A variety of different control systems are used to accomplish this, ranging from simple clockwork mechanisms to sophisticated computerized control and coordination systems that self-adjust to minimize delay to people using the junction.

<span class="mw-page-title-main">Smart traffic light</span>

Smart traffic lights or Intelligent traffic lights are a vehicle traffic control system that combines traditional traffic lights with an array of sensors and artificial intelligence to intelligently route vehicle and pedestrian traffic. They can form part of a bigger intelligent transport system.

<span class="mw-page-title-main">Glossary of road transport terms</span>

Terminology related to road transport—the transport of passengers or goods on paved routes between places—is diverse, with variation between dialects of English. There may also be regional differences within a single country, and some terms differ based on the side of the road traffic drives on. This glossary is an alphabetical listing of road transport terms.

References

  1. "Transport for NSW looks to commercialise SCATS traffic system". ITNews. 11 December 2019. Retrieved 12 December 2019.
  2. Aydos J.C., O'Brien A. SCATS Ramp Metering: Strategies, Arterial Integration and Results, Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems, Qingdao, 2014
  3. Commuter Software was acquired by Autodesk
  4. Vehicle detectors to be installed to stop road congestion
  5. Acott, Kent (6 January 2011). "Red lights that drive you made". The West Australian. Retrieved 18 January 2012.
  6. "What are these mysterious squares on NJ traffic lights?". www.nj.com. 13 October 2016. Retrieved October 13, 2016.
  7. ATCS being implemented in Metro Atlanta