T5 retrofit conversion

Last updated

T5 retrofit conversion is a means of converting light fittings designed to use T8 format lamps, so that they can use more energy-efficient T5 lamps. [1] This is done by electronically converting the luminaires to high frequency operation. [2]

Contents

Differences from other fluorescent lamps

T5 lamps are approximately 40% smaller than T8 Lamps. T5 lamps have a G5 base while T8 lamps use a G13 base. [3]

Conversion technology

Conversion kits are available which will work in existing fittings containing switch start, mains frequency fluorescent lamp ballasts. The kits convert the fittings to use energy efficient, high frequency ballasts and accommodate the smaller diameter T5 lamp. [1]

The magnetic ballast remains in place but it is bypassed, rendering it ineffective as a conductor. The new high-frequency ballast draws only 2  W, rather than the 6-10 W of the old ballast, increasing the efficiency of the system. [4] Changing to this type of lamp without taking the ballast out of operation (rather than simply bypassing it) results in an increased power factor for the fitting. This increase in power is a result of the separate coils used in an electric ballast, as opposed to the single coil in a magnetic ballast, because it allows the electricity to flow more consistently. [5]

There are tree main types of conversion kits:

Energy efficiency

T5 retrofit conversion can maintain existing lighting levels with the higher efficiency of the T5 lamp. However, with kits that operates the lamp on the existing magnetic ballast, the efficiency drops and the lamp life is considerably shortened, as T5 lamps aren't designed to be operated on mains frequency but only on high frequency.

Related Research Articles

<span class="mw-page-title-main">Electric light</span> A device that produces light from electricity

An electric light, lamp, or light bulb is an electrical component that produces light. It is the most common form of artificial lighting. Lamps usually have a base made of ceramic, metal, glass, or plastic, which secures the lamp in the socket of a light fixture, which is often called a "lamp" as well. The electrical connection to the socket may be made with a screw-thread base, two metal pins, two metal caps or a bayonet cap.

<span class="mw-page-title-main">Timeline of lighting technology</span>

Artificial lighting technology began to be developed tens of thousands of years ago and continues to be refined in the present day.

<span class="mw-page-title-main">Fluorescent lamp</span> Lamp using fluorescence to produce light

A fluorescent lamp, or fluorescent tube, is a low-pressure mercury-vapor gas-discharge lamp that uses fluorescence to produce visible light. An electric current in the gas excites mercury vapor, which produces short-wave ultraviolet light that then causes a phosphor coating on the inside of the lamp to glow. A fluorescent lamp converts electrical energy into useful light much more efficiently than an incandescent lamp. The typical luminous efficacy of fluorescent lighting systems is 50–100 lumens per watt, several times the efficacy of incandescent bulbs with comparable light output. For comparison, the luminous efficacy of an incandescent bulb may only be 16 lumens per watt.

A DC-to-DC converter is an electronic circuit or electromechanical device that converts a source of direct current (DC) from one voltage level to another. It is a type of electric power converter. Power levels range from very low to very high.

<span class="mw-page-title-main">Mercury-vapor lamp</span> Light source using an electric arc through mercury vapor

A mercury-vapor lamp is a gas-discharge lamp that uses an electric arc through vaporized mercury to produce light. The arc discharge is generally confined to a small fused quartz arc tube mounted within a larger soda lime or borosilicate glass bulb. The outer bulb may be clear or coated with a phosphor; in either case, the outer bulb provides thermal insulation, protection from the ultraviolet radiation the light produces, and a convenient mounting for the fused quartz arc tube.

<span class="mw-page-title-main">Compact fluorescent lamp</span> Fluorescent lamps with folded tubes, often with built-in ballast

A compact fluorescent lamp (CFL), also called compact fluorescent light, energy-saving light and compact fluorescent tube, is a fluorescent lamp designed to replace an incandescent light bulb; some types fit into light fixtures designed for incandescent bulbs. The lamps use a tube that is curved or folded to fit into the space of an incandescent bulb, and a compact electronic ballast in the base of the lamp.

<span class="mw-page-title-main">Metal-halide lamp</span> Type of lamp

A metal-halide lamp is an electrical lamp that produces light by an electric arc through a gaseous mixture of vaporized mercury and metal halides. It is a type of high-intensity discharge (HID) gas discharge lamp. Developed in the 1960s, they are similar to mercury vapor lamps, but contain additional metal halide compounds in the quartz arc tube, which improve the efficiency and color rendition of the light. The most common metal halide compound used is sodium iodide. Once the arc tube reaches its running temperature, the sodium dissociates from the iodine, adding orange and reds to the lamp's spectrum from the sodium D line as the metal ionizes. As a result, metal-halide lamps have high luminous efficacy of around 75–100 lumens per watt, which is about twice that of mercury vapor lights and 3 to 5 times that of incandescent lights and produce an intense white light. Lamp life is 6,000 to 15,000 hours. As one of the most efficient sources of high CRI white light, metal halides as of 2005 were the fastest growing segment of the lighting industry. They are used for wide area overhead lighting of commercial, industrial, and public places, such as parking lots, sports arenas, factories, and retail stores, as well as residential security lighting, automotive headlamps and indoor cannabis grow operations.

<span class="mw-page-title-main">Induction lamp</span> Gas-discharge lamp in which an electric or magnetic field transfers energy to the gas inside.

The induction lamp, electrodeless lamp, or electrodeless induction lamp is a gas-discharge lamp in which an electric or magnetic field transfers the power required to generate light from outside the lamp envelope to the gas inside. This is in contrast to a typical gas discharge lamp that uses internal electrodes connected to the power supply by conductors that pass through the lamp envelope. Eliminating the internal electrodes provides two advantages:

<span class="mw-page-title-main">Hydrargyrum medium-arc iodide lamp</span>

Hydrargyrum medium-arc iodide (HMI) is the trademark name of Osram's brand of metal-halide gas discharge medium arc-length lamp, made specifically for film and entertainment applications. Hydrargyrum comes from the Greek name for the element mercury.

<span class="mw-page-title-main">Electrical ballast</span> Device to limit the current in lamps

An electrical ballast is a device placed in series with a load to limit the amount of current in an electrical circuit.

<span class="mw-page-title-main">Multifaceted reflector</span> Light bulb

A multifaceted reflector light bulb is a reflector housing format for halogen as well as some LED and fluorescent lamps. MR lamps were originally designed for use in slide projectors, but see use in residential lighting and retail lighting as well. They are suited to applications that require directional lighting such as track lighting, recessed ceiling lights, desk lamps, pendant fixtures, landscape lighting, retail display lighting, and bicycle headlights. MR lamps are designated by symbols such as MR16 where the diameter is represented by numerals indicating units of eighths of an inch. Common sizes for general lighting are MR16 and MR11, with MR20 and MR8 used in specialty applications. Many run on low voltage rather than mains voltage alternating current so require a power supply.

<span class="mw-page-title-main">Grow light</span> Lighting to aid plant growth

A grow light is an electric light to help plants grow. Grow lights either attempt to provide a light spectrum similar to that of the sun, or to provide a spectrum that is more tailored to the needs of the plants being cultivated. Outdoor conditions are mimicked with varying colour temperatures and spectral outputs from the grow light, as well as varying the intensity of the lamps. Depending on the type of plant being cultivated, the stage of cultivation, and the photoperiod required by the plants, specific ranges of spectrum, luminous efficacy and color temperature are desirable for use with specific plants and time periods.

<span class="mw-page-title-main">LED lamp</span> Light source

An LED lamp or LED light bulb is an electric light that produces light using light-emitting diodes (LEDs). LED lamps are significantly more energy-efficient than equivalent incandescent lamps and can be significantly more efficient than most fluorescent lamps. The most efficient commercially available LED lamps have efficiencies of 200 lumen per watt (Lm/W). Commercial LED lamps have a lifespan many times longer than incandescent lamps.

Voltage optimisation is a term given to the systematic controlled reduction in the voltages received by an energy consumer to reduce energy use, power demand and reactive power demand. While some voltage 'optimisation' devices have a fixed voltage adjustment, others electronically regulate the voltage automatically.

<span class="mw-page-title-main">Plasma lamp</span> Type of electrodeless gas-discharge lamp

Plasma lamps are a type of electrodeless gas-discharge lamp energized by radio frequency (RF) power. They are distinct from the novelty plasma lamps that were popular in the 1980s.

<span class="mw-page-title-main">Fluorescent-lamp formats</span>

Since their introduction as a commercial product in 1939, many different types of fluorescent lamp have been introduced. Systematic nomenclature identifies mass-market lamps as to overall shape, power rating, length, color, and other electrical and illuminating characteristics.

United States Lighting Energy Policy is moving towards increased efficiency in order to lower greenhouse gas emissions and energy use. Lighting efficiency improvements in the United States can be seen through different standards and acts. The Energy Independence and Security Act of 2007 laid out changes in lighting legislation for the United States. This set up performance standards and the phase-out of incandescent light bulbs in order to require the use of more efficient fluorescent lighting. EISA 2007 is an effort to increase lighting efficiency by 25-30%. Opposition to EISA 2007 is demonstrated by the Better Use of Light Bulbs Act and the Light Bulb Freedom of Choice Act. The efforts to increase lighting efficiency are also demonstrated by the Energy Star program and the increase efficiency goals by 2011 and 2013.

Universal Lighting Technologies, Inc. is a commercial lighting manufacturer founded in 1947 and based in Nashville, Tennessee. It was part of the $105 Billion Panasonic family of companies from 2007 to 3 2021. Today, the company is owned by Atar Capital and operates under the entity of Universal Douglas Lighting Americas, Inc..

<span class="mw-page-title-main">GU24 lamp fitting</span>

A GU24 lamp fitting is a bi-pin connector for compact fluorescent lamps (CFL) or LED lamps that uses a bayonet mount–like twist-lock bi-pin connector instead of the Edison screw fitting used on many CFLs, LED lamps and incandescent light bulbs. The design was initiated by the U.S. EPA and the Lighting Research Center in 2004, in order to facilitate the deployment of compact fluorescent light bulbs with replaceable ballasts.

<span class="mw-page-title-main">LED tube</span>

LED tube is a type of LED lamp used in fluorescent tube luminaires with G5 and G13 bases to replace traditional fluorescent tubes. As compared to fluorescent tubes, the most important advantages of LED tubes are energy efficiency and long service life. LED tubes are sometimes also referred to as ‘LED fluorescent tubes’.

References

  1. 1 2 3 "How to implement T5 retrofit conversion kits". The Carbon Trust. Retrieved 2009-11-30.
  2. "Save It Easy" . Retrieved 2009-11-30.
  3. "T5 Fluorescent Systems". Lighting Research Center. Retrieved 2009-11-30.
  4. "New generation energy efficient fluorescent tubes: triphosphor". Building Sustainable Design. Retrieved 2009-11-30.
  5. http://www.thegrowlightdistrict.com/2015/08/t5-vs-t8/ [ dead link ]