Tellurogallate

Last updated

Tellurogallates are chemical compounds which contain anionic units of tellurium connected to gallium. They can be considered as gallates where tellurium substitutes for oxygen. Similar compounds include the thiogallates, selenogallates, telluroaluminates, telluroindates and thiostannates. They are in the category of chalcogenotrielates or more broadly tellurometallates or chalcogenometallates.

Contents

Formation

Tellurogallates may be produced by heating a metal with gallium and tellurium in a sealed tube.


Properties

Some tellurogallates are semiconductors

Use

Tellurogallates are primarily of research interest. They are investigated for their infrared, thermoelectric and semiconductor characteristics.

List

namechemmwcrystal systemspace groupunit cell ÅvolumedensitycommentCAS

no

references
lithium tellurogallateLiGaTe2321.86tetragonalI42da=6.338 c=11.704 Z=16470.12.937orange to black; band gap 2.41 eV [1] [2]
sodium trigallium pentatellurideNaGa3Te5trigonalR32a=14.58 c=17.761 Z=123269.55.272black [3]
[(C6H5)4P]GaTe2(en)2 en = ethane-1,2-diaminemonoclinicC2/ca=20.680 b=5.3877 c=27.192 β=19.13°3029.61.720orange [4]
KGaTe2monoclinicC2/ca=11.768, b=11.775, c=16.503, β=100.36°, Z=16 [5]
KGaTe2triclinicP1 or P1a=8.34 b=8.34 c=64.4 αβγ~90°4479.44.30 [6]
hexapotassium di-μ-telluridobis (ditelluridogallate)K6Ga2Te6monoclinicP121/c1a = 8.616, b = 13.685, c = 11.290, β = 127.61°, Ζ = 21054.6 [7]
K[K([18]crown-6)]2[GaTe3] · 2CH3CNmonoclinicC2/ma=24.469 b=14.073 c=12.875 β=94.47 Z=443691.784yellow (@113K) [8]
CaGa6Te10monoclinicC2a=14.40 b=14.40 c=10.21 β=90.0 Z=42117.1 [9]
Cr3(GaTe3)2amorphous [10]
MnGa2Te4monoclinicC2/ca=11.999, b=11.999, c=24.922, β=104.01°, Z=16 [11]
MnGa2Te4orthorhombicPnmaa = 27.448, b = 4.192, c = 6.993 Z=4804.65.82 [12]
Fe3(GaTe3)2amorphous [10]
Co3(GaTe3)2amorphous [10]
Ni3-xGaTe2P63/mmca=3.9393 c=15.7933 Z=2 [13]
Ni2FeGaTeP63/mmca=3.962 c=15.868 Z=2215.7 [13]
CuGaTe2I42da = 6.02348, c = 11.93979433.2 [14]
ZnGa2Te4I4a=5.930, c=11.859 Z=25.7 [15]
ZnGa2Te4tetragonalI42ma=6.922 c=11.809 [16]
ZnGa2Te4F43ma=5.843 Z=1/2 [16]
AgGaTe2I42da=6.320 c=11.986 Z=26.052melt 725.7°C; heat of fusion= 104.8 J/g−1 [17] [18]
AgGa5Te8tetragonalI41/aa=8.415 c=47.877 [19] [20]
Ag2Ga6Te10 [19]
Ag9GaTe6hexagonalmelt 710°C Low thermal conductivity [21] [19] [22]
CdGa2Te4tetragonala=5.742 c=10.730 [23]
InGaTe2tetragonalI4/mcma = 8.412, c = 6.875; Z = 4; [24]
In2Ga6Te10trigonalR32a=10.34 alpha=89.7 Z=125.78 [25]
SnGa6Te10trigonalP3121/6a=14.408 c=17.678 Z=631785.684black [26]
SnxGa1-xTe x=1/2cubica=6.315251.84 [27]
β-BaGa2Te4orthorhombicImmaa = 23.813, b = 11.967, c = 6.7215 [28]
Ba5Ga2Ge3Te12monoclinicP21/ca = 13.6540, b = 9.6705, and c = 23.1134 β =91.829 [28]
LaGaITe2orthorhombicPmc21 [29]
CeGaITe2orthorhombicPmc21 [29]
PrGaITe2orthorhombicPmc21 [29]
NdGaITe2orthorhombicPmc21 [29]
Eu0.81Ga2Te4tetragonalI4/mcma = 8.2880, c = 6.744, Z = 2463.24 [30]
HgGa2Te4cubicF43ma=6.002 Z=1216.22 [31]
HgGa2Te4tetragonalI42ma=6.025 c=12.037 Z=2436.95black [31]
TlGaTe2tetragonalI4/mmm D184ha=8.429 c=6.865band gap 0.84 eV [32] [33]
Tl2InGaTe4tetragonalI4mcm [34]
PbGa6Te10trigonalP3221/6a=14.465 c=17.718 Z=632105.898black [35] [26]

Related Research Articles

<span class="mw-page-title-main">Tellurium</span> Chemical element, symbol Te and atomic number 52

Tellurium is a chemical element; it has symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionally found in its native form as elemental crystals. Tellurium is far more common in the Universe as a whole than on Earth. Its extreme rarity in the Earth's crust, comparable to that of platinum, is due partly to its formation of a volatile hydride that caused tellurium to be lost to space as a gas during the hot nebular formation of Earth.

<span class="mw-page-title-main">Zinc telluride</span> Chemical compound

Zinc telluride is a binary chemical compound with the formula ZnTe. This solid is a semiconductor material with a direct band gap of 2.26 eV. It is usually a p-type semiconductor. Its crystal structure is cubic, like that for sphalerite and diamond.

<span class="mw-page-title-main">Lead telluride</span> Chemical compound

Lead telluride is a compound of lead and tellurium (PbTe). It crystallizes in the NaCl crystal structure with Pb atoms occupying the cation and Te forming the anionic lattice. It is a narrow gap semiconductor with a band gap of 0.32 eV. It occurs naturally as the mineral altaite.

<span class="mw-page-title-main">Mercury telluride</span> Topologically insulating chemical compound

Mercury telluride (HgTe) is a binary chemical compound of mercury and tellurium. It is a semi-metal related to the II-VI group of semiconductor materials. Alternative names are mercuric telluride and mercury(II) telluride.

<span class="mw-page-title-main">Gallium(II) telluride</span> Chemical compound

Gallium(II) telluride, GaTe, is a chemical compound of gallium and tellurium. There is research interest in the structure and electronic properties of GaTe because of the possibility that it, or related compounds, may have applications in the electronics industry. Gallium telluride can be made by reacting the elements or by metal organic vapour deposition (MOCVD).

The indium chalcogenides include all compounds of indium with the chalcogen elements, oxygen, sulfur, selenium and tellurium. (Polonium is excluded as little is known about its compounds with indium). The best-characterised compounds are the In(III) and In(II) chalcogenides e.g. the sulfides In2S3 and InS.
This group of compounds has attracted a lot of research attention because they include semiconductors, photovoltaics and phase-change materials. In many applications indium chalcogenides are used as the basis of ternary and quaternary compounds such as indium tin oxide, ITO and copper indium gallium selenide, CIGS.

<span class="mw-page-title-main">Gallium(II) selenide</span> Chemical compound

Gallium(II) selenide (GaSe) is a chemical compound. It has a hexagonal layer structure, similar to that of GaS. It is a photoconductor, a second harmonic generation crystal in nonlinear optics, and has been used as a far-infrared conversion material at 14–31 THz and above.

<span class="mw-page-title-main">I-III-VI semiconductors</span> Solid semiconducting materials

I-III-VI2 semiconductors are solid semiconducting materials that contain three or more chemical elements belonging to groups I, III and VI (IUPAC groups 1/11, 13 and 16) of the periodic table. They usually involve two metals and one chalcogen. Some of these materials have a direct bandgap, Eg, of approximately 1.5 eV, which makes them efficient absorbers of sunlight and thus potential solar cell materials. A fourth element is often added to a I-III-VI2 material to tune the bandgap for maximum solar cell efficiency. A representative example is copper indium gallium selenide (CuInxGa(1–x)Se2, Eg = 1.7–1.0 eV for x = 0–1), which is used in copper indium gallium selenide solar cells.

<span class="mw-page-title-main">Molybdenum ditelluride</span> Chemical compound

Molybdenum(IV) telluride, molybdenum ditelluride or just molybdenum telluride is a compound of molybdenum and tellurium with formula MoTe2, corresponding to a mass percentage of 27.32% molybdenum and 72.68% tellurium.

The telluride bromides are chemical compounds that contain both telluride ions (Te2−) and bromide ions (Br). They are in the class of mixed anion compounds or chalcogenide halides.

The telluride oxides or oxytellurides are double salts that contain both telluride and oxide anions. They are in the class of mixed anion compounds.

The telluride phosphides are a class of mixed anion compounds containing both telluride and phosphide ions. The phosphidotelluride or telluridophosphide compounds have a [TeP]3− group in which the tellurium atom has a bond to the phosphorus atom. A formal charge of −2 is on the phosphorus and −1 on the tellurium. There is no binary compound of tellurium and phosphorus. Not many telluride phosphides are known, but they have been discovered for noble metals, actinides, and group 4 elements.

The telluride iodides are chemical compounds that contain both telluride ions (Te2−) and iodide ions (I). They are in the class of mixed anion compounds or chalcogenide halides.

Selenogallates are chemical compounds which contain anionic units of selenium connected to gallium. They can be considered as gallates where selenium substitutes for oxygen. Similar compounds include the thiogallates and selenostannates. They are in the category of chalcogenotrielates or more broadly chalcogenometallates.

Gallium palladide is an intermetallic combination of gallium and palladium. It has the iron monosilicide crystal structure. The compound has been suggested as an improved catalyst for hydrogenation reactions. In principle, gallium palladide can be a more selective catalyst since unlike substituted compounds, the palladium atoms are spaced out in a regular crystal structure rather than randomly.

Arsenide bromides or bromide arsenides are compounds containing anions composed of bromide (Br) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide chlorides, arsenide iodides, phosphide bromides, and antimonide bromides.

Arsenide tellurides or telluride arsenides are compounds containing anions composed of telluride (Te2−) and arsenide (As3−). They can be considered as mixed anion compounds. Related compounds include the arsenide sulfides, arsenide selenides, antimonide tellurides, and phosphide tellurides. Some are in the category of arsenopyrite-type compounds with As:Te of 1:1. Yet others are layered with As:Te of 1:2.

Tellurogermanates or telluridogermanates are compounds with anions with tellurium bound to germanium. They are analogous with germanates, thiogermanates and selenidogermanates.

Aluminium gallium antimonide, also known as gallium aluminium antimonide or AlGaSb (AlxGa1-xSb), is a ternary III-V semiconductor compound. The alloy can contain any ratio between aluminium and gallium; that is, x in the formula can continuously take on any value between 0 and 1. AlGaSb refers generally to any composition of the alloy.

References

  1. Isaenko, L.; Yelisseyev, A.; Lobanov, S.; Titov, A.; Petrov, V.; Zondy, J.-J.; Krinitsin, P.; Merkulov, A.; Vedenyapin, V.; Smirnova, J. (April 2003). "Growth and properties of LiGaX2 (X = S, Se, Te) single crystals for nonlinear optical applications in the mid-IR". Crystal Research and Technology. 38 (35): 379–387. Bibcode:2003CryRT..38..379I. doi:10.1002/crat.200310047. S2CID   95433320.
  2. Isaenko, L.; Krinitsin, P.; Vedenyapin, V.; Yelisseyev, A.; Merkulov, A.; Zondy, J.-J.; Petrov, V. (2005-07-01). "LiGaTe 2 : A New Highly Nonlinear Chalcopyrite Optical Crystal for the Mid-IR". Crystal Growth & Design. 5 (4): 1325–1329. doi:10.1021/cg050076c. ISSN   1528-7483.
  3. Kienle, L.; Deiseroth, H. J. (1996-09-01). Kienle, L.; Deiseroth, H. J. (eds.). "Crystal structure of natrium trigallium pentatelluride, NaGa 3 Te 5". Zeitschrift für Kristallographie - Crystalline Materials. 211 (9): 629. Bibcode:1996ZK....211..629K. doi:10.1524/zkri.1996.211.9.629. ISSN   2194-4946.
  4. Warren, Christopher J.; Ho, Douglas M.; Haushalter, Robert C.; Bocarsly, Andrew B. (1994). "Electrochemical synthesis of a new gallium telluride containing one-dimensional chains: structure of [(C6H5)4P]GaTe2(en)2(en = ethane-1,2-diamine)". Journal of the Chemical Society, Chemical Communications (3): 361–363. doi:10.1039/c39940000361. ISSN   0022-4936.
  5. Kim, Joonyeong; Hughbanks, Timothy (February 2000). "Synthesis and Structures of Ternary Chalcogenides of Aluminum and Gallium with Stacking Faults: KMQ2 (M=Al, Ga; Q=Se, Te)". Journal of Solid State Chemistry. 149 (2): 242–251. Bibcode:2000JSSCh.149..242K. doi:10.1006/jssc.1999.8523.
  6. Weis, Jürgen; Schäfer, Herbert; Schön, Günter (1976-10-01). "Neue ternäre Telluride und Selenide der Alkalimetalle mit Elementen der 3. Hauptgruppe.: New Ternary Element(I)/Element(III)-Tellurides and Selenides". Zeitschrift für Naturforschung B. 31 (10): 1336–1340. doi: 10.1515/znb-1976-1008 . ISSN   1865-7117. S2CID   95370844.
  7. Eisenmann, Β.; Hofmann, A. (1991-12-01). "Crystal structure of hexapotassium di-μ-telluridobis( ditelluridogallate), K 6 Ga 2 Te 6". Zeitschrift für Kristallographie - Crystalline Materials. 197 (1–4): 145–146. doi:10.1524/zkri.1991.197.14.145. ISSN   2196-7105. S2CID   101288891.
  8. Park, Chang-Woo; Salm, Robert J.; Ibers, James A. (1995-09-15). "New Tellurometalates of Gallium and Indium: K[K([18]crown-6)]2[GaTe3]· 2CH3CN and[(NEt4)5][In3Te7]· 0.5 Et2O". Angewandte Chemie International Edition in English. 34 (17): 1879–1880. doi:10.1002/anie.199518791. ISSN   0570-0833.
  9. Klee, Wilfried; Schäfer, Herbert (1979-05-01). "Zur Darstellung und Kristallstruktur von CaAl 6 Te 10 und CaGa 6 Te 10 / On the Preparation and Crystal Structure of CaAl 6 Te 10 and CaGa 6 Te 10". Zeitschrift für Naturforschung B. 34 (5): 657–661. doi: 10.1515/znb-1979-0502 . ISSN   1865-7117. S2CID   53384064.
  10. 1 2 3 Jung, Jin-Seung; Hak Kim, Hyun; Gu Kang, Seog; Jun, Jong-Ho; Buisson, Youngsook L.; Ren, Lianwei; O'Connor, Charles J. (February 1998). "Synthesis and characterization of electric and magnetic properties of the new intermetallic compounds M3(GaTe3)2 (M = Cr, Fe, Co)". Inorganica Chimica Acta. 268 (2): 271–277. doi:10.1016/S0020-1693(97)05757-5.
  11. Cannas, M.; Garbato, A.; Garbato, L.; Ledda, F.; Navarra, G. (January 1996). "Crystal growth and structure of MnGa2Te4". Progress in Crystal Growth and Characterization of Materials. 32 (4): 171–183. doi:10.1016/0960-8974(95)00020-8.
  12. Range, K.-J.; Panzer, B.; Klement, U. (February 1990). "MnGa2Te4-II, a high pressure modification of digallium manganese tetratelluride". Journal of the Less Common Metals. 158 (1): L27–L31. doi:10.1016/0022-5088(90)90450-X.
  13. 1 2 Kuznetsov, Alexey N.; Stroganova, Ekaterina A.; Zakharova, Elena Yu; Solopchenko, Alexander V.; Sobolev, Alexey V.; Presniakov, Igor A.; Kirdyankin, Denis I.; Novotortsev, Vladimir M. (June 2017). "Mixed nickel-gallium tellurides Ni 3−x GaTe 2 as a matrix for incorporating magnetic cations: A Ni 3−x Fe x GaTe 2 series". Journal of Solid State Chemistry. 250: 90–99. Bibcode:2017JSSCh.250...90K. doi:10.1016/j.jssc.2017.03.020.
  14. Leon, M.; Merino, J. M.; De Vidales, J. L. Martin (August 1992). "Crystal structure of synthesized CuGaTe2 determined by X-ray powder diffraction using the Rietveld method". Journal of Materials Science. 27 (16): 4495–4500. Bibcode:1992JMatS..27.4495L. doi:10.1007/BF00541585. ISSN   0022-2461. S2CID   96226155.
  15. Rashmi; Dhawan, U. (March 2002). "X-ray powder diffraction study of ZnGa 2 Te 4". Powder Diffraction. 17 (1): 41–43. Bibcode:2002PDiff..17...41R. doi:10.1154/1.1424263. ISSN   0885-7156. S2CID   101865200.
  16. 1 2 Errandonea, D.; Kumar, R. S.; Gomis, O.; Manjón, F. J.; Ursaki, V. V.; Tiginyanu, I. M. (2013-12-21). "X-ray diffraction study on pressure-induced phase transformations and the equation of state of ZnGa 2 Te 4". Journal of Applied Physics. 114 (23): 233507–233507–7. Bibcode:2013JAP...114w3507E. doi:10.1063/1.4851735. hdl: 10251/35872 . ISSN   0021-8979.
  17. Yusufu, Aikebaier; Kurosaki, Ken; Kosuga, Atsuko; Sugahara, Tohru; Ohishi, Yuji; Muta, Hiroaki; Yamanaka, Shinsuke (2011-08-08). "Thermoelectric properties of Ag 1− x GaTe 2 with chalcopyrite structure". Applied Physics Letters. 99 (6): 061902. Bibcode:2011ApPhL..99f1902Y. doi: 10.1063/1.3617458 . ISSN   0003-6951.
  18. Burger, A.; Ndap, J.-O.; Cui, Y.; Roy, U.; Morgan, S.; Chattopadhyay, K.; Ma, X.; Faris, K.; Thibaud, S.; Miles, R.; Mateen, H. (May 2001). "Preparation and thermophysical properties of AgGaTe2 crystals". Journal of Crystal Growth. 225 (2–4): 505–511. Bibcode:2001JCrGr.225..505B. doi:10.1016/S0022-0248(01)00957-5.
  19. 1 2 3 Julien, C.; Ivanov, I.; Khelfa, A.; Alapini, F.; Guittard, M. (June 1996). "Characterization of the ternary compounds AgGaTe2 and AgGa5Te8". Journal of Materials Science. 31 (12): 3315–3319. Bibcode:1996JMatS..31.3315J. doi:10.1007/BF00354684. ISSN   0022-2461. S2CID   98409362.
  20. Guittard, M; Rivet, J; Mazurier, A; Jaulmes, S; Fourcroy, P.H (February 1988). "Systeme Ag2Te Ga2Te3. phases intermediaires. determinations structurales. diagramme de phase". Materials Research Bulletin (in French). 23 (2): 217–225. doi:10.1016/0025-5408(88)90098-0.
  21. Guittard, M.; Rivet, J.; Alapini, F.; Chilouet, A.; Loireau-Lozac'h, A.-M. (June 1991). "Description du système ternaire Ag-Ga-Te". Journal of the Less Common Metals (in French). 170 (2): 373–392. doi:10.1016/0022-5088(91)90339-6.
  22. Lin, Siqi; Li, Wen; Bu, Zhonglin; Shan, Bing; Pei, Yanzhong (2020-02-24). "Thermoelectric p-Type Ag 9 GaTe 6 with an Intrinsically Low Lattice Thermal Conductivity". ACS Applied Energy Materials. 3 (2): 1892–1898. doi:10.1021/acsaem.9b02330. ISSN   2574-0962. S2CID   213996120.
  23. Nikolic, P M; Stojilkovic, S M (1981-07-10). "Far infrared optical properties of single crystal CdGa 2 Te 4". Journal of Physics C: Solid State Physics. 14 (19): L551–L555. Bibcode:1981JPhC...14L.551N. doi:10.1088/0022-3719/14/19/006. ISSN   0022-3719.
  24. Deiseroth, H.-J.; Müller, D.; Hahn, H. (June 1985). "Strukturuntersuchungen an InGaSe2 und InGaTe2". Zeitschrift für anorganische und allgemeine Chemie (in German). 525 (6): 163–172. doi:10.1002/zaac.19855250619. ISSN   0044-2313.
  25. Guittard, M.; Alapini, F.; Jaulmes, S.; Julien-Pouzol, M.; Flahaut, J. (November 1978). "Sur une famille de tellurures ternaires formes par le gallium avec l'etain II, le plomb ou l'indium I, de type SnGa6Te10". Materials Research Bulletin (in French). 13 (11): 1157–1161. doi:10.1016/0025-5408(78)90203-9.
  26. 1 2 Kienle, L.; Deiseroth, H. J. (1998-11-01). Kienle, L.; Deiseroth, H. J. (eds.). "SnAl 6 Te 10 , SnGa 6 Te 10 and PbGa 6 Te 10 : superstructures, symmetry relations and structural chemistry of filled β -manganese phases". Zeitschrift für Kristallographie - Crystalline Materials. 213 (11): 569–574. Bibcode:1998ZK....213..569K. doi:10.1524/zkri.1998.213.11.569. ISSN   2194-4946.
  27. Dovletov, K.O. (1983). "RELATIONSHIP BETWEEN THE PHYSICOCHEMICAL AND ELECTROPHYSICAL PROPERTIES OF SEMICONDUCTING COMPOUNDS OF THE A2IBIVC3VI-TYPE, A4IB3IVC5VI-TYPE, AIIIBIVC2VI-TYPE, AND A2IIIBIVC3VI-TYPES". Inorganic Materials. 19 (8): 1174–1178.
  28. 1 2 Sun, Mengran; Zhang, Xingyu; Xing, Wenhao; Li, Zhuang; Liu, Wenhao; Lin, Zheshuai; Yin, Wenlong; Yao, Jiyong (2021-10-04). "Synthesis and Characterizations of Two Tellurides β-BaGa 2 Te 4 and Ba 5 Ga 2 Ge 3 Te 12 with Flexible Chain Structure". Inorganic Chemistry. 60 (19): 14793–14802. doi:10.1021/acs.inorgchem.1c02045. ISSN   0020-1669. PMID   34529425. S2CID   237546151.
  29. 1 2 3 4 Lindemann, T.; Isaeva, A.; Oeckler, O.; IUCr (2021-08-14). "Tellurides with monovalent Ga and In – from chains to networks". Acta Crystallographica Section A: Foundations and Advances. 77: C446. doi: 10.1107/S0108767321092400 . S2CID   246800805 . Retrieved 2022-04-20.
  30. "Two Ternary Europium Chalcogenides Eu(1-x)Ga2Te4(x≈0.19) and EuY2Se4, Experimental and Theoretical Investigations". www.cqvip.com (in English and Chinese). Yangzhou University. August 2018. Archived from the original on April 22, 2022. Retrieved 24 April 2023.
  31. 1 2 Agostinellt, E.; Gastaldi, L.; Viticoli, S. (April 1985). "Crystal growth and X-ray structural investigatton of two forms of HgGa2Te4". Materials Chemistry and Physics. 12 (4): 303–312. doi:10.1016/0254-0584(85)90101-4.
  32. Nagat, A. T.; Gamal, G. A.; Hussein, S. A. (1991). "Growth and Characterization of Single Crystals of the Ternary Compound TlGaTe2". Crystal Research and Technology. 26 (1): 19–23. Bibcode:1991CryRT..26...19N. doi:10.1002/crat.2170260105.
  33. Nagat, A. T.; Gamal, G. A.; Hussein, S. A. (1990-08-16). "Growth and Characterization of Ternary Compound TiGaTe2 Single Crystals". Physica Status Solidi A (in German). 120 (2): K163–K167. Bibcode:1990PSSAR.120..163N. doi:10.1002/pssa.2211200254.
  34. Qasrawi, A. F.; Gasanly, N. M. (2007). "Crystal data and some physical properties of Tl2InGaTe4 crystals". Crystal Research and Technology. 42 (8): 807–811. Bibcode:2007CryRT..42..807Q. doi:10.1002/crat.200710909. S2CID   197109766.
  35. Avanesov, S.A.; Badikov, D.V.; Badikov, V.V.; Panyutin, V.L.; Petrov, V.; Shevyrdyaeva, G.S.; Martynov, A.A.; Mitin, K.V. (November 2014). "Phase equilibrium studies in the PbTe–Ga2Te3 and PbTe–In2Te3 systems for growing new nonlinear optical crystals of PbGa6Te10 and PbIn6Te10 with transparency extending into the far-IR". Journal of Alloys and Compounds. 612: 386–391. doi:10.1016/j.jallcom.2014.05.168.